• 제목/요약/키워드: Logic-based fuzzy neural networks

검색결과 79건 처리시간 0.023초

Evaluating Mental State of Final Year Students Based on POMS Questionnaire and HRV Signal

  • Handri, Santoso;Nomura, Shusaku;Nakamura, Kazuo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.37-42
    • /
    • 2010
  • Final year students are normally encountering high pressing in their study. In view of this fact, this research focuses on determining mental states condition of college student in final year based on the psycho-physiological information. The experiments were conducted in two times, i.e., prior- and post- graduation seminar examination. The early results indicated that the student profile of mood states (POMS) in prior final graduation seminar showed higher scores than students in post final graduation seminar. Thus, in this research, relation between biosignal representing by heart rate variability (HRV) and questionnaire responses were evaluated by hidden Markov model (HMM) and neural networks (NN).

ANFIS 접근방식에 의한 미래 트랜드 충격 분석 (Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System)

  • 김용길;문경일;최세일
    • 한국전자통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.499-505
    • /
    • 2015
  • TIA(: Trend Impact Analysis)는 발생될 가능성이 있는 미래의 예기치 못한 사건들을 식별하고 분석하기 위한 고급 예측 도구에 속한다. 적응적인 뉴로-퍼지 추론 시스템은 인공신경망의 일종으로 신경망과 퍼지 로직 원리를 모두 통합하고 보편적 추정되는 것으로 간주한다. 본 논문에서는 적응적인 뉴로-퍼지 추론 시스템을 사용하여 예기치 못한 사건에 관한 심각성의 정도를 추론하고 이를 시간의 함수로서 도입하여 예기치 못한 사건들의 출현 확률에 관해 보다 타당한 추정치를 얻는데 있다. 이러한 접근방식에 대한 배후 개념은 예기치 못한 사건이 갑자기 출현되는 것이 아니라 관련 사건이 가지고 있는 속성 값에 대한 건드림 혹은 변화가 기존 속성 값의 한계를 벗어나 마치 새로운 사건인 것처럼 등장할 수 있음을 전제로 하고 있다. ANFIS 접근 방식은 이러한 사건을 식별해서 예기치 못한 사건의 심각성의 정도를 추론하는데 매우 적절한 방식이라 할 수 있다. 속성들의 변화 값들은 확률적인 동적 모델 및 Monte-Carlo 방법을 사용하여 얻을 수 있다. 제안된 모델에 관한 타당성은 강 유역의 예상치 못한 가뭄에 따른 충격 추세 곡선을 기존 연구 결과와의 비교를 통해 나타낸다.

Web Page Evaluation based on Implicit User Reactions and Neural Networks

  • Lee, Dong-Hoon;Kim, Jae-Kwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.181-186
    • /
    • 2012
  • This paper proposes a method for evaluating web pages by considering implicit user reaction on web pages. Usually users spend more time and make more reactions, such as clicking, dragging and scrolling, while reading interesting pages. Based on this observation, a web page evaluation method by observing implicit user reaction is proposed. The system is designed with Ajax for observing user reactions, and neural networks for learning correlation between user reactions and usefulness of pages. The amounts of each type of user reactions are inputted to neural networks. Also the numbers of characters and images of pages are used as inputs because the amount of users' behaviors has a tendency to increase as the length of pages increase. The experiment is conducted with 113 people and 74 pages. Each page is ranked by users with a questionnaire. The proposed method shows more close ranking results to the user ranks than Google. That is, our system evaluates web pages more closely to users' viewpoint than Google. Although our experiment is limited, our result shows powerful potential of new element for web page evaluation. Some approaches evaluate web pages with their contents and some evaluate web pages with structural attributes, particularly links, of pages. Web page evaluation is for users, so the best evaluation can be done by users themselves. So, user feedback is one of the most important factors for web page evaluation. This paper proposes a new method which reflects user feedbacks on web pages.

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

A Study on Kohenen Network based on Path Determination for Efficient Moving Trajectory on Mobile Robot

  • Jin, Tae-Seok;Tack, HanHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.101-106
    • /
    • 2010
  • We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object's position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the inputoutput relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of moving objects. The superiority of the proposed algorithm compared with the EKF is demonstrated through real experiments.

Enhancing Security Gaps in Smart Grid Communication

  • Lee, Sang-Hyun;Jeong, Heon;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • 제2권2호
    • /
    • pp.7-10
    • /
    • 2014
  • In order to develop smart grid communications infrastructure, a high level of interconnectivity and reliability among its nodes is required. Sensors, advanced metering devices, electrical appliances, and monitoring devices, just to mention a few, will be highly interconnected allowing for the seamless flow of data. Reliability and security in this flow of data between nodes is crucial due to the low latency and cyber-attacks resilience requirements of the Smart Grid. In particular, Artificial Intelligence techniques such as Fuzzy Logic, Bayesian Inference, Neural Networks, and other methods can be employed to enhance the security gaps in conventional IDSs. A distributed FPGA-based network with adaptive and cooperative capabilities can be used to study several security and communication aspects of the smart grid infrastructure both from the attackers and defensive point of view. In this paper, the vital issue of security in the smart grid is discussed, along with a possible approach to achieve this by employing FPGA based Radial Basis Function (RBF) network intrusion.

승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용 (Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures)

  • 김승진;김형곤;이종수;강신일
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Statistical RBF Network with Applications to an Expert System for Characterizing Diabetes Mellitus

  • Om, Kyong-Sik;Kim, Hee-Chan;Min, Byoung-Goo;Shin, Chan-So;Lee, Hong-Kyu
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.355-365
    • /
    • 1998
  • The purposes of this study are to propose a network for the characterizing of the input data and to show how to design predictive neural net재가 expert system which doesn't need previous knowledge base. We derived this network from the radial basis function networks(RBFN), and named it as a statistical EBFN. The proposed network can replace the statistical methods for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without previous knowledge base. Not only the applicability of the characterizing of parameters related to diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN to other similar problems.

  • PDF

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.