
 

 

International Journal of Fuzzy Logic and Intelligent Systems, vol.10, no. 2, June 2010, pp. 101-106 

 

101 
 
 

A Study on Kohenen Network based on Path Determination 
    for Efficient Moving Trajectory on Mobile Robot 

 
TaeSeok Jin* and HanHo Tack ** 

 
* Dept. of Mechatronics Engineering, DongSeo University 

** Dept. of Electronics Engineering, Jinju National University 
Tel : +82-51-320-1541, Fax : +82-51-320-1751, E-mail : jints@dongseo.ac.kr 

 

Abstract 
We propose an approach to estimate the real-time moving trajectory of an object in this paper. The object’s position is obtained from the 
image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the 
uncertainties and noises residing in the input data, a Extended Kalman Filter(EKF) and neural networks are utilized cooperatively. Since the 
EKF needs to approximate a nonlinear system into a linear model in order to estimate the states, there still exist errors as well as 
uncertainties. To resolve this problem, in this approach the Kohonen networks, which have a high adaptability to the memory of the input-
output relationship, are utilized for the nonlinear region. In addition to this, the Kohonen network, as a sort of neural network, can 
effectively adapt to the dynamic variations and become robust against noises. This approach is derived from the observation that the 
Kohonen network is a type of self-organized map and is spatially oriented, which makes it suitable for determining the trajectories of 
moving objects.  The superiority of the proposed algorithm compared with the EKF  is demonstrated through real experiments.  
 
Key Words : Distributed cameras, Object tracking, Color histogram, Global model, Intelligent environment.  

 
 

1. Introduction 
 
Detection of moving objects has been utilized in industrial 

robotic systems, for example, in the recognition and monitoring 
of unmanned systems that also require compression of moving 
images [1-2]. Trajectory prediction of moving objects is 
required for a mobile manipulator that aims at the control and 
observation of motion information such as object position, 
velocity, and acceleration. Prediction and estimation algorithms 
have generally been required for industrial robots. For a simple 
example, in a pick-and-place operation with a manipulator, the 
precise motion estimation of the object on the conveyor belt is 
a critical factor in stable grasping. A well-structured 
environment, such as the moving-jig that carries the object on 
the conveyor belt and stops when the manipulator grasps the 
object, might obviate the motion estimation requirement. 
However, a well-structured environment limits the flexibility of 
the production system, requires skillful designers for the jig, 
and incurs a high maintenance expense; eventually it will 
disappear from automated production lines. To overcome these 
problems, a camera needs to detect a moving object stably 
without stopping the motion, the trajectory prediction of the 
moving object on the conveyor belt is necessary. The 
manipulator control system needs to estimate the most accurate 
position, velocity, and acceleration atany instance to capture 
the moving object safely without collision and to pick up the 
object stably without slippage. When the motion trajectory is 

not highly random and continuous, it can be modeled 
analytically to predict the near-future values based on 
previously measured data [2].  

In this paper, a novel approach for the real-time trajectory 
estimation of a moving object is proposed. For image-data 
capturing, a CCD camera was utilized. Through a geometrical 
analysis of the camera and the object, the position of the object 
could be estimated [3]. There are several approaches in which 
the state estimator is used to predict the linear and angular 
velocities of a moving object. The most general approach 
known so far is the Kalman filter, the performance of which is 
well verified by numerous studies [4-8]. However, the Kalman 
filter is not properly applicable to the unstructured environment, 
even though the adaptive or extended Kalman filter has been 
proposed to improve prediction accuracy [9]. To make the 
system robust against noises in the input data and uncertainties, 
in this approach, artificial neural networks are incorporated into 
the Kalman filter. Since the artificial neural networks are 
trained by only the relationship between the input and output, 
this approach is expected to have higher flexibility than the 
adaptive or extended Kalman filter. Among the several 
advantages of the neural networks, the adaptability to variations 
is well matched to this problem. That is, it has robust 
characteristics against measurement noises. Fig. 1 summarizes 
the trajectory estimation system for this research. The input for 
the dynamic model comes from either the Kalman filter or 
SOM(Self-Organized Map) according to the following decision 
equation:  

 (1 )out outpreicted value k Kalman k SOM= ⋅ + − ⋅  (1)  Manuscript received Nov. 30, 2009; revised Jun. 11, 2010; 
Accepted Jun. 12, 2010. 
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where k=1 for error≤threshold and k=0 for error>threshold.  
The threshold value is empirically determined based on the 

size of the estimated position error.  
 

 
Fig. 1 Trajectory estimation system 

 
 

2. Parameter Learning 
 

2.1 Pre-Processing 
Classifying the moving-object pattern in the dynamically 

changing unstructured environment has not yet been tackled 
successfully [13]. Therefore, in this research, the camera was 
fixed on a stable platform in order to capture static environment 
images. To estimate the states of the motion characteristics, the 
trajectory of the moving object was pre-recorded and analyzed. 
Figures 2(a), (b), (c) and (d) represent the object images at (t-3), 
(t-2), (t-1) and (t) instance, respectively.  

 

  

  (a)                             (b)  

  

          (c)                                   (d)  
Fig. 2 Image at the each instance: (a)~(d) Image at (t-3), (t-2), 

(t-1), (t) instance, respectively. 

 

As recognized in the images, most parts of the CCD image 
correspond to the background. After eliminating the 

background, the difference between the two consecutive image 
frames can be obtained to estimate the moving-object motion. 
To compute the difference, either the absolute values of the two 
image frames or the assigned values can be used. The 
difference method is popular in image pre-processing for 
extracting desired information from the whole image frame 
[14], which can be expressed as  

 ( , ) ( , ) 2( , )Output x y Image x y Image x y= +  (2) 
The difference image between Figs. 2(a) and (b) is 

represented in Fig. 3. When the difference image for the whole 
time interval can be obtained, the trajectory of the moving 
object can be calculated precisely.   

 

 
Fig. 3 Difference image between (t) and (t-1) instance images  

 
2.2 Motion vector estimation  

Motion vectors can be defined for the moving object at any 
instance. In order to predict the motion trajectory using the 
Kalman filter and SOM, these motion vectors are the essential 
inputs that must be obtained from the difference images. As 
mentioned previously, since the CCD camera is fixed on a 
stable platform, the motion vector can be computed based on 
the data of the difference vector between the two consecutive 
image frames and the sampling period. When the SOM is 
utilized for the estimation of the motion vector, highly 
correlated motion vectors reside close to each other, which will 
be explained in Section 4. The fact that motion vectors of 
neighboring states have a high spatial correlation is utilized for 
estimating the current motion vector in the motion vector 
estimation process. An example of a motion vector is illustrated 
in Fig. 4.  

 

 
Fig. 4 Illustration of a motion vector  
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3. State Estimation by Kalman Filter  
 
The input-image data include uncertainties and noises that 

occur during pre-processing. Therefore, the Kalman filter is 
suitable for the observer that estimates the states under a noisy 
environment, since the state transition matrix itself has irregular 
components [4-5]. Note that the Kalman filter is a recursive 
process to minimize the estimation error by multiplying a 
suitable filter gain by the error between estimated and 
measured values. In the problem of state estimation of a 
moving object, the measurement vector for the Kalman filter is 
derived from the position of the moving object on the xy-plane, 
which position is obtained from the image frames. Using the 
measurement vector, the state variables, (x, y) position, 
direction, and linear/angular velocities, are estimated.  

In obtaining the filter gain, a zero-mean variance matrix for 
the estimation error is included, which can be estimated by the 
terms of the zero-mean variance matrix, state transition matrix, 
and zero-mean measurement noise matrix, 1kQ − , of the 

previous instance, as  

 , 1 1 , 1 1
T

k k k k k k k− − − −′ = +P A P A Q  (3) 

Now the optimal filter gain, kK , to minimize the state 

estimation error can be obtained as  

 1[ ]T T
k k k k k k k

−′ ′= +K P C C P C R  (4) 

where kP′  is the zero-mean variance matrix for the 

estimation error, kC is the observation matrix, and kR  

represents the zero-mean variance matrix for the measurement 
noises.  

The states are estimated by the following state transition 
equation, in which an innovation term is added as an input and 
multiplied by the Kalman filter gain, K k

, which is the 

difference between the measurement vector, ky , and the 

estimated output using the data from the previous step:  

 , 1 1 , 1 1ˆ ˆ ˆ[ ]k k k k k k k k k kx x x− − − −= + −A K y C A  (5) 

where 
, 1 1ˆk k k kx− −C A  represents the estimated output, ˆky .  

Before going back to Eq. (5) for the next step, the zero-mean 
variance matrix of the estimated error needs to be modified as 
[6-7]. 

 kkkkk PCKPP ′−′=  (6) 

 
 

4. Self-Organized Map  
 
For a nonlinear system, the Kalman filter requires a process 

to approximate to a quasi-linear model to derive the filtering 
equations, which approximation leads to many estimation 
errors. For the linear model derivation, the Taylor series 
expansion is usually adopted to select the number of terms or to 

select the order of computational complexity that is inversely 
proportional to the modeling accuracy. Therefore, it suffers 
from the trade-off between accuracy and complexity in 
obtaining a linear model and in estimating the state variable, 

kx .  

Especially since Kalman filtering is based on the first-order 
approximation, it neither estimates the states properly all of the 
time nor guarantees the convergence of the states. The adaptive 
or extended Kalman filter proposed in order to overcome this 
difficulty, but again, the adaptive Kalman filter suffers from a 
too-high computational complexity for real-time control. To 
avoid all of these difficult calculations, there are several ideas 
for estimating the states using artificial neural networks [10-12]. 
In these approaches, the supervised learning schemes that 
require data on the input and oexity for real-time control. To 
avoid all of these difficult calculations, there are several ideas 
for estimating the states using artificial neural networks [10-12]. 
In these approaches, the supervised learning schemes that 
require data on the input and oexity for real-time control. To 
avoid all of these difficult calculations, Each neuron in SOM 
calculates and maintains the Euclidian distance that represents 
the closeness of the connection intensity vector and the input 
vector. Each neuron, which belongs to a group that is formed 
by the winner through competition, can have only the output. 
This winner neuron and neighboring neurons are allowed to 
learn from a specific input vector. The connection intensity 
between the winner neuron j  and the neighboring neurons is 

adaptively changed by  

 ( 1) ( ) ( ( ) ( ))ij ij i ijw t w t x t w tα+ = + −  (7) 

where the parameter, α , is pre-determined for SOM.  
In this paper, SOM estimated the position and velocity of the 

moving object. During the learning process, SOM determined 
the optimal states based on the various measurable states.  This 
enables the use of SOM instead of the Kalman filter for the 
high nonlinear region where noise distributions and 
uncertainties are poorly modeled statistically.  

 

 
Fig. 5 Competition procedure in SOM 

 
Before the main experiments, the Kohonen networks[12,13] 

were trained for the moving object, an autonomous micro-
mouse designed for this research. The pattern classifications of 
learning results for the velocity and orientation, respectively, 
are illustrated in Fig. 5.  
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The velocity and orientation of the moving object can be 
grouped into several regions, and inside each region, a specific 
neuron can be selected by real-time learning. The hybrid neural 
networks formed by the velocity and orientation networks are 
implemented to achieve more efficient learning and to clearly 
show that the motion characteristics of the moving object can 
be classified into several patterns.  Since Kohonen networks 
have learning abilities as neural networks, the un-experienced 
input coming from the estimation process can be classified into 
one of the groups, and inside the group region it can be learned 
for a specific state value. For supervised learning, the input 
patterns are artificially provided, by humans a priori, and the 
neural networks learn only the direction to the object patterns 
from the given input patterns. However, un-supervised learning 
such as SOM can determine the intrinsic features from the 
arbitrary input patterns, and can compete with different neurons 
for the different features. SOM can be efficiently utilized for 
the trajectory estimation of a moving object when the 
nonlinearity of the moving object is too high to be estimated by 
the Kalman filter. Limiting the application of SOM to the 
nonlinear region is proposed in order to save learning patterns. 
Many precise learning patterns are required for learning both 
the linear and nonlinear regions. An insufficient number of 
learning patterns might lead to erroneous learning results [13]. 
Since SOM utilizes the dynamic model for trajectory 
estimation described in Eq. (7), the stochastic characteristics 
are not essential for SOM, but are definitely required for the 
Kalman filter.  

 
 

5. Experiments  
 
In the present study, a micro-mouse was designed for a 

moving object using the microprocessor, ATmega126, which 
generates a non-programmed trace with the maximum speed of 
15 Cm/sec. To show the effectiveness of the SOM, three 
experiments were performed to show the following as: 1. A 
relatively linear motion can be estimated properly by the 
Kalman filter, 2. The extended Kalman filter is somewhat 
effective for reducing the estimation error in the nonlinear 
region, and 3. The SOM improves the estimation performance 
significantly compared with the extended Kalman filter.   

    
5.1 Comparison between the EKF and SOM  

Before comparing the extended Kalman filter with SOM, 
some experiments were performed to confirm the superiority of 
the unsupervised learning method over the supervised learning 
method [11-12], and the results are summarized in Table 1.  

As shown in Table 1, even though supervised learning also 
has outstanding performance, the performance degradation 
becomes severe and becomes unsuitable for the dynamically 
changing environment, whereas unsupervised learning remains 
consistent. Based on this observation, SOM is selected as the 
best alternative to the extended Kalman filter for the nonlinear 
region.   To reduce the estimation error, the extended Kalman 

filter and SOM [10-11] was applied for the nonlinear region, 
and the results are shown in Fig. 6. The estimation error for the 
nonlinear region is reduced by 50 % by the extended Kalman 
filter. However, the maximum error is still larger than 1 Cm. 
Another experiment was performed with SOM instead of the 
extended Kalman filter in the nonlinear region to show the 
superiority of the unsupervised learning scheme, SOM. Figure 
6 shows the experimental results of state estimation by the 
Kalman filter for the linear region and by SOM for the 
nonlinear region (from S to T). We need to focus on the 
nonlinear region where SOM is applied for the estimation 
instead of the extended Kalman filter. By comparison of Fig. 
6(a) and 6(b), it is recognized that SOM is much better than the 
extended Kalman filter for estimating the nonlinear region. The 
maximum estimation error by the SOM is 0.7 Cm, which is 
about 70% of that by the extended Kalman filter.  

 
Table 1. Performance comparison of two different neural 

networks 

Classification 
Class 

Number of trials Number of success*

Supervised 
Learning 

50 39 

Unsupervised 
Learning 

50 46 

* A success is tallied when the estimation error is less than 1 
Cm.  

 

 
(a) EKF  

 
(b) SOM  

Fig. 6 Position estimation error in the nonlinear region 
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5.2 Tracking Experiment  
To compare the tracking performance of a mobile robot 

using the algorithms of the extended Kalman filter, and SOM, 
experiments of capturing a micro mouse with random motion 
by the mobile robot were performed. As can be recognized 
from Fig. 7, SOM provided better performance to the mobile 
robot in capturing the random motion object than the other 
algorithms. The mobile robot with SOM has a smooth curve to 
capture the moving object. As the result, the capturing time for 
the moving object is the shortest with SOM, as is illustrated in 
Fig. 7(b).  And  Figure 8 shows the mobile robot trajectory, 
the moving object trajectory with each of the algorithms, which 
comparison concludes that SOM provides a smooth and stable 
trajectory to the mobile robot to capture a random motion 
object.  

 

 
(a) Extended Kalman  

 
(b) SOM  

Fig. 7 Tracking trajectory of moving object and mobile robot 
using Extended Kalman filter and SOM  

 
 

6. Conclusions  
 
This research proposes a trajectory estimation scheme for a 

moving object using images captured by a CCD camera. In the 
scheme, the state estimator has two algorithms: the Kalman 
filter that estimates the states for the linear approximated region, 

and SOM for the nonlinear region.  The decision for the 
switchover is made based on the size of the position estimation 
error that becomes low enough for the linear region and 
becomes large enough for the nonlinear region. The 
effectiveness and superiority of the proposed algorithm was 
verified through experimental data and comparison. The 
adaptability of the algorithm was also observed during the 
experiments. For the sake of simplicity, this research was 
limited to the environment of a fixed-camera view. However, 
this can be expanded to the moving camera environment, where 
the input data might suffer from higher noises and uncertainties. 
As future research, selection of a precise learning pattern for 
SOM in order to improve the estimation accuracy and the 
recognition ratio, and development of an illumination robust 
image processing algorithm, remain.  
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