• Title/Summary/Keyword: Logic circuits

Search Result 530, Processing Time 0.028 seconds

Education Effect of a Web-based Virtual Laboratory for Digital Logic Circuits (웹기반 디지털 논리회로 가상실험실의 교육효과)

  • Lee, Sun-heum;Choi, Kwan-Sun;Kim, Dong-Sik;Kim, Wonkyum
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In this paper, we have investigated the education effect of a web-based virtual laboratory for digital logic circuits which consists of multimedia contents about the usages of equipments for logic circuit experiments and the experimental logic circuits. In case of the engineering experiment of the lower grades in universities, preunderstanding about the usages of experimental equipments and the experimental circuits is necessary for the learners to conduct the experiments well. But it is impossible for the learners to have access to the real experimental equipments earlier due to the lack of equipments and the difficulty in management of the equipments. We have implemented the digital logic circuit virtual laboratory which provides the same experimental environment as a real experimental lab, and the learner can conduct the same experiments as the real ones before the real laboratory class. The learners using the laboratory have reduced the experiment completion time by the average of about 8.2% during a term, compared with the learners not using the lab.

  • PDF

Synthesis of Multi-level Reed Muller Circuits using BDDs (BDD를 이용한 다단계 리드뮬러회로의 합성)

  • Jang, Jun-Yeong;Lee, Gwi-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.640-654
    • /
    • 1996
  • This paper presents a synthesis method for multi-level Reed-Muller circuits using BDDs(Binary Decision Diagrams). The existing synthesis tool for Reed circuits, FACTOR, is not appropriate to the synthesis of large circuits because it uses matrix (map-type) to represent given logic functions, resulting in the exponential time and space in number of imput to the circuits. For solving this problems, a syntheisis method based on BDD is presented. Using BDDs, logic functions are represented compactly. Therefor storage spaces and computing time for synthesizing logic functions were greatly decreased, and this technique can be easily applied to large circuits. Using BDD representations, the proposed method extract best patterns to minimize multi-level Reed Muller circuits with good performance in area optimization and testability. Experimental results using the proposed method show better performance than those using previous methods〔2〕. For large circuits of considering the best input partition, synthesis results have been improved.

  • PDF

Design of 32-bit Carry Lookahead Adder Using ENMODL (ENMODL을 이용한 32 비트 CLA 설계)

  • 김강철;이효상;송근호;서정훈;한석붕
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.787-794
    • /
    • 1999
  • This paper presents an ENMODL(enhances NORA MODL) circuit and implements a high-speed 32 bit CLA(carry lookahead adder) with the new dynamic logics. The proposed logic can reduce the area and the Propagation delay of carry because output inverters and a clocking PMOS of second stage can be omitted in two-stage MODL(multiple output domino logic) circuits. The 32-bit CLA is implemented with 0.8um double metal CMOS Process and the carry propagation delay of the adder is about 3.9 nS. The ENMODL circuits can improve the performance in the high-speed computing circuits depending on the degree of recurrence.

  • PDF

A Construction Theory of Combinational Multiple Valued Circuits by Modular Decomposition (모듈 분할 방식에 의한 조합 다치 논리 회로 구성이론)

  • 강성수;이주형;김흥수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 1989
  • This paper represents a method which construct Combinational Mutiple Valued Logic circuits. First, it constructs Combinational Multiple Valued Logic Cell as the input variable, Then, it can be applied to the general case by expanding ti, thus these series of process is simple and regular. The construction theory of Combinational Multiple Valued Logic circuits, representes here has regularity, simplicity and modularity, especially, in case imput variables are incresed this theory also has characteristics of expansion.

  • PDF

Design of A Driving Circuit for Plasma Display Panels (플라즈마 디스플레이 패널 구동회로의 설계)

  • Choi, Ill-Hoon;Kim, Jun-Hyung;Lim, Beong-Ha;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.554-557
    • /
    • 2002
  • In this paper, PDP driving circuit is designed to show the pattern of still-image with ADS (Address Display Separation) driving method. The designed circuits consist of three stages which are the image processing program, digital logic parts, and power circuits. The Image processing program is designed serial-communication with RS-232C using BASIC language. Digital logic parts design ADS driving signals with Xilinx FPGA and are simulated by ModelSim 5.5f. Power circuits convert output of digital logic parts into high voltage which panel is drived.

  • PDF

Design of a Full-Adder Using Current-Mode Multiple-Valued Logic CMOS Circuits (전류 모드 CMOS 다치 논리 회로를 이용한 전가산기 설계)

  • Won, Young-Uk;Kim, Jong-Soo;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.275-278
    • /
    • 2003
  • This paper presents a full-adder using current-mode multiple valued logic CMOS circuits. This paper compares propagation delay, power consumption, and PDP(Power Delay Product) compared with conventional circuit. This circuit is designed with a samsung 0.35um n-well 2-poly 3-metal CMOS technology. Designed circuits are simulated and verified by HSPICE. Proposed full-adder has 2.25 ns of propagation delay and 0.21 mW of power consumption.

  • PDF

Comparison of FPGA-based Direct Torque Controllers for Permanent Magnet Synchronous Motors

  • Utsumi Yoshiharu;Hoshi Nobukazu;Oguchi Kuniomi
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • This paper compares two types of direct torque controllers for permanent magnet synchronous motors(PMSMs). These controllers both use a single-chip FPGA(Field Programmable Gate Array) but have differing hardware configurations. One of the controllers was constructed by programming a soft-core CPU and hardware logic circuits written in VHDL(Very high speed IC Hardware Description Language), while the other was constructed of only hardware logic circuits. The characteristics of these two controllers were compared in this paper. The results show the controller constructed of only hardware logic circuits was able to shorten the control period and it was able to suppress the low torque ripple.

A Construction Theory of Sequential Multiple-Valued Logic Circuit by Matrices Operations (행열연산에 의한 순서다치논리회로 구성이론)

  • Kim, Heung Soo;Kang, Sung Su
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.460-465
    • /
    • 1986
  • In this paper, a method for constructing of the sequential multiple-valued logic circuits over Galois field GF(px) is proposed. First, we derive the Talyor series over Galois field and the unique matrices which accords with the number of the element over the finite field, and we constdruct sequential multiple-valued logic circuits using these matrices. Computational procedure for traditional polynomial expansion can be reduced by using this method. Also, single and multi-input circuits can be easily implemented.

  • PDF

Study for Digital Logic Circuit Using Resonant Tunneling Diodes (공명투과다이오드를 이용한 논리회로의 응용 연구)

  • 추혜용;박평운;이창희;이일항
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.75-80
    • /
    • 1994
  • AlAs/GaAs/AlAs RTDs(Resonant Tunneling Diodes) are fabricated and current-voltage properties of them are measured. At room temperature, peak to valley ratio is 2.4 NOT.AND.OR logic gates and Flip-Flop are fabricated using the bistable characteristics of RTDs. Although NOT.AND.OR logic gates need 5~8 transistors. only one RTD is sufficient to fabricate the logic gates. Since the switching time is very short(<10$^12$sec), it is possible to drive the semiconductor circuits fast and integrate them very large. And it is convinced the possibility of integrating RTDs to multilevel logic circuits by observing two peaks of similar current in the serial connection of two RTDs.

  • PDF