• Title/Summary/Keyword: Logic circuits

Search Result 530, Processing Time 0.025 seconds

Design of a High Performance 32$\times$32-bit Multiplier Based on Novel Compound Mode Logic and Sign Select Booth Encoder (새로운 복합모드로직과 사인선택 Booth 인코더를 이용한 고성능 32$\times$32-bit 곱셈기의 설계)

  • Kim, Jin-Hwa;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • In this paper, a novel compound mode logic based on the advantage of both CMOS logic and pass-transistor logic(PTL) is proposed. From the experimental results, the power-delay products of the compound mode logic is about 22% lower than that of the conventional CMOS logic, when we design a full adder. With the proposed logic, a high performance 32$\times$32-bit multiplier has been fabricated with 0.6um CMOS technology. It is composed of an improved sign select Booth encoder, an efficient data compressor based on the compound mode logic, and a 64-bit conditional sum adder with separated carry generation block. The Proposed 32$\times$32-bit multiplier is composed of 28,732 transistors with an active area of 1.59$\times$1.68 mm2 except for the testing circuits. From the measured results, the multiplication time of the 32$\times$32-bit multiplier is 9.8㎱ at a 3.3V power supply, and it consumes about 186㎽ at 100MHz.

  • PDF

Cascaded Propagation and Reduction Techniques for Fault Binary Decision Diagram in Single-event Transient Analysis

  • Park, Jong Kang;Kim, Myoungha;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • Single Event Transient has a critical impact on highly integrated logic circuits which are currently common in various commercial and consumer electronic devices. Reliability against the soft and intermittent faults will become a key metric to evaluate such complex system on chip designs. Our previous work analyzing soft errors was focused on parallelizing and optimizing error propagation procedures for individual transient faults on logic and sequential cells. In this paper, we present a new propagation technique where a fault binary decision diagram (BDD) continues to merge every new fault generated from the subsequent logic gate traversal. BDD-based transient fault analysis has been known to provide the most accurate results that consider both electrical and logical properties for the given design. However, it suffers from a limitation in storing and handling BDDs that can be increased in size and operations by the exponential order. On the other hand, the proposed method requires only a visit to each logic gate traversal and unnecessary BDDs can be removed or reduced. This results in an approximately 20-200 fold speed increase while the existing parallelized procedure is only 3-4 times faster than the baseline algorithm.

A Logic-compatible Embedded DRAM Utilizing Common-body Toggled Capacitive Cross-talk

  • Cheng, Weijie;Das, Hritom;Chung, Yeonbae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.781-792
    • /
    • 2016
  • This paper presents a new approach to enhance the data retention of logic-compatible embedded DRAMs. The memory bit-cell in this work consists of two logic transistors implemented in generic triple-well CMOS process. The key idea is to use the parasitic junction capacitance built between the common cell-body and the data storage node. For each write access, a voltage transition on the cell-body couples up the data storage levels. This technique enhances the data retention and the read performance without using additional cell devices. The technique also provides much strong immunity from the write disturbance in the nature. Measurement results from a 64-kbit eDRAM test chip implemented in a 130 nm logic CMOS technology demonstrate the effectiveness of the proposed circuit technique. The refresh period for 99.9% bit yield measures $600{\mu}s$ at 1.1 V and $85^{\circ}C$, enhancing by % over the conventional design approach.

Boolean Extraction Technique Using Two-cube Divisors and Complements (2-큐브 제수와 보수에 의한 공통 논리식 산출)

  • Kwon, Oh-Hyeong;Oh, Im-Geol
    • The KIPS Transactions:PartA
    • /
    • v.15A no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper presents a new Boolean extraction technique for logic synthesis. This method extracts two-cube Boolean subexpression pairs from each logic expression. It begins by creating two-cube array, which is extended and compressed with complements of two-cube Boolean subexpressions. Next, the compressed two-cube array is analyzed to extract common subexpressions for several logic expressions. The method is greedy and extracts the best common subexpression. Experimental results show the improvements in the literal counts over well-known logic synthesis tools for some benchmark circuits.

Novel Design of 8T Ternary SRAM for Low Power Sensor System

  • Jihyeong Yun;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.152-157
    • /
    • 2024
  • In this study, we propose a novel 8T ternary SRAM that can process three logic values (0, 1, and 2) with only two additional transistors, compared with the conventional 6T binary SRAM. The circuit structure consists of positive and negative ternary inverters (PTI and NTI, respectively) with carbon-nanotube field-effect transistors, replacing conventional cross-coupled inverters. In logic '0' or '2,' the proposed SRAM cell operates the same way as conventional binary SRAM. For logic '1,' it works differently as storage nodes on each side retain voltages of VDD/2 and VDD, respectively, using the subthreshold current of two additional transistors. By applying the ternary system, the data capacity increases exponentially as the number of cells increases compared with the 6T binary SRAM, and the proposed design has an 18.87% data density improvement. In addition, the Synopsys HSPICE simulation validates the reduction in static power consumption by 71.4% in the array system. In addition, the static noise margins are above 222 mV, ensuring the stability of the cell operation when VDD is set to 0.9 V.

Design of LTPS TFT Current Mode Multiplexer and MUX-based Logic Gates

  • Jeong, Ju-Young;Hong, Moon-Pyo
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • With the aim of creating a high-quality display system with value-added functions, we designed a current mode multiplexer for LTPS TFT devices. The multiplexers had less than 1 volt logic swing, and speed improvement was evident compared with that of conventional CMOS architecture. We refined the multiplexer to achieve a more stable current steering operation. By using the versatility of the multiplexer, a new NAND/AND and NOR/OR logic gates were designed through the simple modification of signal connections. Two micron LTPS TFT parameters were used during the HSPICE simulation of the circuits.

Design of Easily Testable CMOS Sequential PLAs (테스트가 용이한 CMOS 순서 PLA의 설계)

  • Lee, J.C.;Lim, J.Y.;Han, S.B.;Hong, I.S.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1507-1511
    • /
    • 1987
  • This paper proposes a NAND-NAND logic sequential Programmable Logic Array (PLA) using CMOS technology, and test generation methods about stuck-open faults. By using LSSD (Level Sensitive Scan Design) method instead of Flip-Flops in Sequential PLA, the complex test problems of sequential logic are simplified. After generating the test sets using connection graph, regular test sequences and all transistor faults detection method in PLA are proposed. Finally, by programming these algorithms in PASCAL at VAX 8700 and adopting these to pratical CMOS Sequential PLA circuits, we proved the effectiveness of this design.

  • PDF

Realization of High Speed All-Optical Half Adder and Half Subtractor Using SOA Based Logic Gates

  • Singh, Simranjit;Kaler, Rajinder Singh;Kaur, Rupinder
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • In this paper, the scheme of a single module for simultaneous operation of all-optical computing circuits, namely half adder and half subtractor, are realized using semiconductor optical amplifier (SOA) based logic gates. Optical XOR gate by employing a SOA based Mach-Zehnder interferometer (MZI) configuration is used to get the sum and difference outputs. A carry signal is generated using a SOA-four wave mixing (FWM) based AND gate, whereas, the borrow is generated by employing the SOA-cross gain modulation (XGM) effect. The obtained results confirm the feasibility of our configuration by proving the good level of quality factor i.e. ~5.5, 9.95 and 12.51 for sum/difference, carry and borrow, respectively at 0 dBm of input power.

A Study on Constructing the Multiple-Valued Combinational Logic Systems by Decision Diagram (결정 다이아그램에 의한 다치조합논리시스템 구성에 관한 연구)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.868-875
    • /
    • 1995
  • This paper presents a method of constructing the multiple-valued combinational logic systems(MVCLS) by decision diagram. The switching function truth table of MVCLS is transformed into canonical normal form of sum-of-products(SOP) with literals at first. Next, the canonical normal form of SOP is transfered into multiple-valued logic decision diagram(MVLDD). The selecting of variable ordering is very important in this stage. The MVLDDs are quite different from each other according to the variable ordering. Sometimes the inadequate variable ordering produces a very large size of MVLDD means the large size of circuit implementation. An algorithm for generating the proper variable ordering produce minimal MVLDD and an example shows the verity of the algorithm. The circuits are realized with T-gate acceording to the minimal MVLDD.

  • PDF

An Implementation of PC based digital logic interface (DIGITAL LOGIC INTERFACE구현)

  • Min, Jin-Kyung;Oh, Hun;Cho, Hyeon-Seob;Ryu, In-Ho;Kim, Hee-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2487-2488
    • /
    • 2004
  • In suite or the presence or various kind of Integrated Circuits it's not always easy to get the right part. Besides, it is hard to find a vendor for a small quantity consumers like who develop prototype applications. In this study, we've tried to get the logical signals from the PC based device we've developed that correspondents with the real ICs. It can emulate decoder ICs, multiplexers, demultiplexers and basic logic gates.

  • PDF