• Title/Summary/Keyword: Logic Circuit

Search Result 724, Processing Time 0.026 seconds

Design and Implementation of Low power ALU based on NCL (Null Convention Logic) (NCL 기반의 저전력 ALU 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.59-65
    • /
    • 2013
  • Conventional synchronous design circuits cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in this paper, a NCL (Null Convention Logic) design as an asynchronous design method has been proposed, where the NCL method doesn't require any timing analysis, and it has a very simple design methodology. Base on the NCL method, a new low power reliable ALU has been designed and implemented using MagnaChip-SKhynix 0.18um CMOS technology. The experimental results of the proposed NCL ALU have been compared to those of a conventional pipelined ALU in terms of power consumption and speed.

Design of Ultra Low-Voltage NCL Circuits in Nanoscale MOSFET Technology (나노 MOSFET 공정에서의 초저전압 NCL 회로 설계)

  • Hong, Woo-Hun;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Ultra low-power design and energy harvesting applications require digital systems to operate under extremely low voltages approaching the point of balance between dynamic and static power consumption which is attained in the sub-threshold operation mode. Delay variations are extremely large in this mode. Therefore, in this paper, a new low-power logic design methodology using asynchronous NCL circuits is proposed to reduce power consumption and not to be affected by various technology variations in nanoscale MOSFET technology. The proposed NCL is evaluated using various benchmark circuits at 0.4V supply voltage, which are designed using 45nm MOSFET predictive technology model. The simulation results are compared to those of conventional synchrouns logic circuits in terms of power consumption and speed.

Translation of OMG IDL for Supporting The FPGA ORB (FPGA ORB 활용을 위한 OMG IDL의 변환 방법)

  • Jeong, Hea-Kyung;Bae, Myung-Nam;Lee, In-Hwan;Lee, Yong-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.40-49
    • /
    • 2009
  • HAO is a ORB engine to support the logic-based CORBA development environments in FPGA. In this papers, in order to support the logic component developments with HAO, we proposes the translation rule from IDL to VHDL, and the generation of skeleton logic code following the rule. It enables to guarantee the interoperability between the components in distributed multi processor environments includes the general purpose processor and FPGAs, and to improve the performance through the usage of logic-circuit.

Design of An Arithmetic Logic Unit Based on Optical Switching Devices (광스위칭소자에 기반한 산술논리연산회로의 설계)

  • 박종현;이원주;전창호
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.149-158
    • /
    • 2002
  • This paper deals with design and verification of an arithmetic logic unit(ALU) to be used for development of optical computers. The ALU is based on optical switching device, $LiNbO_3$, which is easy to interface with electronic technology and most common in the market. It consists of an arithmetic/logic circuit performing logic operations, memory devices storing operands and the results of operations, and supplementary circuits to select instruction codes, and operates in bit-serial manner. In addition, a simulator is developed for verification of the design, and a set of basic instructions are executed in sequence and step-by-step changes in the accumulator and the memory are examined through simulations, to show that various operations are performed correctly.

  • PDF

A Design of High Performance Parallel CRC Generator (고성능 병렬 CRC 생성기 설계)

  • Lee, Hyun-Bean;Park, Sung-Ju;Min, Pyoung-Woo;Park, Chang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9A
    • /
    • pp.1101-1107
    • /
    • 2004
  • This paper presents an optimization algorithm and technique for designing parallel Cyclic Redundancy Check (CRC) circuit, which is most widely adopted for error detection A new heuristic algorithm is developed to find as many shared terms as possible, thus eventually to minimize the number and level of the exclusive-or logic blocks in parallel CRC circuits. 16-bit and 32-bit CRC generators are designed with different types of Programmable Logic Devices, and it has been found that our new algorithm and architecture significantly reduce the delay.

Fuzzy logic Controlled Electronic Ballast for HID Lamps (HID 램프용 퍼지제어 전자식 안정기)

  • Kim, Byeong-Cheol;Cha, Hyeon-Rok;Kim, Gwang-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.587-594
    • /
    • 2002
  • A low frequency square wave electronic ballast for the high intensity discharge(HID) lamps using fuzzy logic controller is developed. This electronic ballast consists a buck converter, a low frequency square wave full bridge inverter, a high voltage pulse generator for the HID lamp ignition, an over current protection circuit and an 8-bit microcontroller. The ballast system is operated on the constant current mode during the HID lamp start-up process and the system is operated on the constant power mode during steady state. Experimental results show that the fuzzy logic control operation is carried out successfully by the 8-bit microcontroller PIC16F877 In this electronic ballast system, in spite of the limited control bandwidth caused by low operating speed of the microcontroller, the good performance in the constant lamp current characteristic is obtained. Acoustic resonance of the HID lamps can be effectively avoided because the instantaneous In lamp power is fully constant due to the low frequency square wave drive.

The Construction of the Digital Logic Switching Functions using PLA (PLA에 기초한 디지털논리스위칭함수 구성)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1794-1800
    • /
    • 2008
  • This paper presents a method of constructing the digital logic switching functions using PLA. First of all, we propose a MIN and MAX algebra arithmetic operation based on the Post algebra. And we discuss the T-gate which is used for realization of the MIN and MAX algebra arithmetic operation. Next, we discuss the MIN array and MAX array which are basic circuit of the PLA, also we discuss the literal property. For the purpose of the design for the digital logic switching functions using PLA, we Propose the variable partition, modular structure design, literal generator, decoder and invertor. The proposed method is the more compactable and extensibility.

Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

  • Wang, Wei;Xu, Hongsong;Huang, Zhicheng;Zhang, Lu;Wang, Huan;Jiang, Sitao;Xu, Min;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

Untestable Faults Identification Using Critical-Pair Path (임계-쌍 경로를 이용한 시험 불가능 결함의 확인)

  • 서성환;안광선
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.29-38
    • /
    • 1999
  • This paper presents a new algorithm RICP(Redundancy Identification using Critical-pair Paths) to identify untestable faults in combinational logic circuits. In a combinational logic circuit, untestable faults occurred by redundancy of circuits. The redundancy of a circuit can be detected by analyzing areas of fanout stem and reconvergent gates. The untestable faults are identified by analyzing stem area using Critical-Pair path which is an extended concept of critical path. It is showed that RICP is better than FIRE(Fault Independent REdundancy identification) algorithm in efficiency. The performance of both algorithms was compared using ISCAS85 bench mark testing circuits.

  • PDF

Embedded System with Controller Area Network(CAN) for Intelligent Power Switches in Automobiles (CAN(Controller Area Network) 통신을 지원하는 차량용 지능형 파워 스위치를 위한 임베디드 시스템)

  • Kim, Sun-Woo;Jang, Yong-Joon;Park, Joon-Sang;Ro, Won-Woo
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.129-134
    • /
    • 2010
  • Intelligent Power Switch (IPS) is a semiconductor device which contains a logic circuit in itself. It has received significant attention as a switching component to substitute the fuse and relay components in common automobile since the internal logic provides the controllability on the loads. However, a control system for the IPS status control and a network system to share the status information of IPS are required to fully exploit the capabilities of IPS. In this paper, we propose a control circuit and algorithm using IPS. Also the communication system between the control systems and IPS components using Control Area network (CAN) are proposed.