Kim, Kyung-Sun;Lee, Kwan-Hee;Cho, Ung-In;Choi, Jae-Shi
Bulletin of the Korean Chemical Society
/
제7권1호
/
pp.29-35
/
1986
An empirical formula for semiconductive metal oxides is proposed relating nonstoichiometric value x to a temperature or an oxygen partial pressure such that experimental data can be represented more accurately by the formula than by the well-known Arrhenius-type equation. The proposed empirical formula is log x = A + $B{\cdot}1000/T\;+\;C{\cdot}$exp$(-D{\cdot}1000/T)$ for a temperature dependence and $log\;{\times}\;=a\;+b{\cdot}log\;Po_2\;+\;c{\cdot}$exp$(-d{\cdot}log\;Po_2)$ for an oxygen partial pressure dependence. The A, B, C, D and a, b, c, d are parameters which are evaluated by means of a best-fitting method to experimental data. Subsequently, this empirical formula has been applied to the n-type metal oxides of $Zn_{1+x}O,\; Cd_{1+x}O,\;and\;PrO_{1.8003-x}$, and the p-type metal oxides of $CoO_{1+x},\; FeO_{1+x},\;and\;Cu_2O_{1+x}$. It gives a very good agreement with the experimental data through the best-fitted parameters within 6% of relative error. It is also possible to explain approximately qualitative characters of the parameters A, B, C, D and a, b, c, d from theoretical bases.
The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.
시판 살균제의 실제 적용 시 감균 효과를 조사하기 위해 양상추를 신선편의 가공하고, 세척 시 살균제로 이들을 적용한 후 저장 중 pH 및 일반세균, 효모, 곰팡이, 대장균, 대장균군의 변화를 조사하였다. 살균제 스크리닝 결과, 0.02%의 염소수 처리 시 3.1 log 감소를, 1% 농도에서 acetic acid는 2.4 log, ascorbic acid는 1.3, citric acid는 0.7 log의 감균 효과를 나타내었다. 시판 중인 살균제 대부분에서 2 log 의 감균 효과를 나타내어, 이들을 신선편의 양상추에 적용하고 $10^{\circ}C$에 저장하면서 양상추의 pH 변화 및 미생물의 변화를 조사하였다. 저장 초기 양상추의 pH는 살균제 용액의 pH에 따라 변화하고 있었는데, 용액의 pH가 가장 높은 칼슘제제(12.0)가 6.1, 가장 낮은 Formula 4(4%, pH 1.7)에서 가장 낮은 pH(4.7)로 나타났으며 저장일 경과에 따라 pH는 유의적으로 증가하고 있었다. 대장균군을 제외하고 0.02%의 염소수가 가장 높은 수준의 미생물 저해 효과를 나타내었다. 반면 Formula 4, Fresh produce wash 모두 3% 이상에서 미생물 저해 효과가 나타나고 있었다. 특히 Formula 4는 대장균 및 대장균군 저해 효과가 매우 좋았다. 모든 처리구에서 곰팡이는 검출되지 않았으며 효모의 경우 염소수와 Fresh produce wash 및 알코올 살균제 중 키토콜과 칼슘 제제 처리구가 효과적으로 저해하고 있었다. 시판 살균제에 따라 미생물 저해 효과는 다르게 나타나고 있었으나 염소수와 비교했을 때 초기 미생물 저해 효과는 존재하고 있기 때문에 부가적인 hurdle technology 및 공정관리를 통해 저장 중 항미생물 효과를 지속시킨다면 실제 적용이 가능할 것으로 판단된다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권3호
/
pp.180-193
/
2023
Approximating the implied volatilities and estimating the model parameters are important topics in quantitative finance. This study proposes an approximation formula for short-maturity near-the-money implied volatilities in stochastic volatility models. A general second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor expansion, an approximation formula for implied volatility is obtained for short-maturity nearthe-money call options in two stochastic volatility models: Heston model and SABR model. In addition, we proposed a novel numerical method to estimate model parameters. This method reduces the number of model parameters that should be estimated. Generating sample data on log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fitting the sample data in the above two models. Our method provides parameter estimates that are close to true values.
Enterobacter sakazakii may be related to outbreaks of meningitis, septicemia, and necrotizing enterocolitis, mainly in neonates. To reduce the risk of E. sakazakii in baby foods, thermal characteristics for Korean E. sakazakii isolates were determined at 52, 56, and $60^{\circ}C$ in saline solution, rehydrated powdered infant formula, and dried baby food. In saline solution, their D-values were 12-16, 3-5, and 0.9-1 min for each temperature. D-values increased to 16-20, 4-5, and 2-4 min in rehydrated infant formula and 14-17, 5-6, and 2-3 min in dried baby food. The overall calculated z-value was 6-8 for saline, 8-10 for powdered infant formula, and 9-11 for dried baby food. Thermal inactivation of E. sakazakii during rehydration of powdered infant formula was investigated by viable counts. Inactivation of cultured E. sakazakii in infant formula milk did not occur for 20 min at room temperature after rehydration with the water at $50^{\circ}C$ and their counts were reduced by about 1-2 log CFU/g at $60^{\circ}C$ and 4-6 log CFU/ml with the water at 65 and $70^{\circ}C$. However, the thermo stability of adapted E. sakazakii to the powdered infant formula increased more than two times. Considering that the levels of E. sakzakii observed in powdered infant formula have generally been 1 CFU/100 g of dry formula or less, contamination with E. sakazakii can be reduced or eliminated by rehydrating water with at least $10^{\circ}C$ higher temperature than the manufacturer-recommended $50^{\circ}C$.
In this paper, a butterfly Log-MAP decoding algorithm for turbo code is proposed. Different from the conventional turbo decoder, we derived a generalized formula to calculate the log-likelihood ratio (LLR) and drew a modified butterfly states diagram in 8-states systematic turbo coded system. By comparing the complexity of conventional implementations, the proposed algorithm can efficiently reduce both the computations and work units without bit error ratio (BER) performance degradation.
난류의 내부 영역의 유속은 단순한 공식으로 표현하기 매우 어려운 형태를 가지고 있다. 이 속도 분포를 기술하는 여러 가지 공식들이 제안된 바 있지만, 모든 공식들은 많은 항들을 가지거나 적분형 또는 음함수꼴을 가지고 있다. 이것은 이 식들이 적용하기 힘들거나, 매개 변수들을 추정하기 어렵다는 것을 의미한다. 이 연구에서는 매끄러운 바닥 위를 흐르는 난류 내부 영역의 유속 분포를 표현할 수 있는 간단한 형태의 새로운 공식을 제안하였다. 이 공식은 전통적인 대수 법칙에 감쇄 함수를 곱한 형태이다. 단 하나의 추가적인 매개 변수를 도입하여, 전체 내부 영역의 유속 분포를 적절하게 표현할 수 있었다. 이 공식은 벽법칙이 성립하는 바닥 근처의 유속과 대수 법칙이 성립되는 중복 영역의 유속 분포까지를 적절하게 나타낼 수 있다. 또한, 추가된 매개 변수인 감쇄 계수는 쉽게 추정할 수 있다. 이 변수는 Reynolds 수의 변화에 민감하지 않으며, 공식에 의하여 계산된 유속 분포도 또한 이 매개 변수의 변화에 대해서 민감하지 않다.
Communications for Statistical Applications and Methods
/
제22권4호
/
pp.389-399
/
2015
It is important not to overcalculate sample sizes for clinical trials due to economic, ethical, and scientific reasons. Kang and Kim (2014) investigated the accuracy of a well-known sample size calculation formula based on the approximate power for continuous endpoints in equivalence trials, which has been widely used for Development of Biosimilar Products. They concluded that this formula is overly conservative and that sample size should be calculated based on an exact power. This paper extends these results to binary endpoints for three popular metrics: the risk difference, the log of the relative risk, and the log of the odds ratio. We conclude that the sample size formulae based on the approximate power for binary endpoints in equivalence trials are overly conservative. In many cases, sample sizes to achieve 80% power based on approximate powers have 90% exact power. We propose that sample size should be computed numerically based on the exact power.
With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$$S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$$S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$$W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$$F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$$F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.
Rainfall, evaporation, and permeability of water are the most important factors in determining the demand of water. The Daegu area has only a meteorologi observatory and there is not sufficient data for adapting the advanced method for derivation of the estimated of evaporation in the Daegu area. However, by using available data, the writer devoted his great effort in deriving the most reasonable formula applicable to the Daegu area and it is adaptable for various purposes such as industry and estimation of groundwater etc. The data used in this study was the monthly amount of evaporation of the Daegu area for the past 13 years(1960 to 1970). A year can be divided into two groups by relative degrees of evaporation in this area: the first group (less evaporation) is January, February, March, October, November, and December, and the second (more evaporation) is April, May, June, July, August, and September. The amount of evaporation of the two groups were statistically treated by the theory of probability for derivation of estimated formula of evaporation. The formula derved is believed to fully consider. The characteristic hydrological environment of this area as the following shows: log(x+3)=0.8963+0.1125$\xi$..........(4, 5, 6, 7, 8, 9 month) log(x-0.7)=0.2051+0.3023$\xi$..........(1, 2, 3, 10, 11, 12 month) This study obtained the above formula of probability of the monthly evaporation of this area by using the relation: $F_(x)=\frac{1}{{\surd}{\pi}}\int\limits_{-\infty}^{\xi}e^{-\xi2}d{\xi}\;{\xi}=alog_{\alpha}({\frac{x_0+b'}{x_0+b})\;(-b<x<{\infty})$$$log(x_0+b)=0.80961$$$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}\;Sx=0.1125$$$$b=\frac{1}{m}\sum\limits_{i-I}^{m}b_s=3.14$$$$S_x=\sqrt{\frac{1}{N}\sum\limits_{i-I}^{N}\{log(x_i+b)\}^2-\{log(x_i+b)\}^2}=0.0791$$ (4, 5, 6, 7, 8, 9 month) This formula may be advantageously applied to estimation of evaporation in the Daegu area. Notation for general terms has been denoted by following: $W_(x)$: probability of occurance. $$W_(x)=\int_x^{\infty}f(x)dx$$ P : probability $$P=\frac{N!}{t!(N-t)}{F_i^{N-{\pi}}(1-F_i)^l$$$$F_{\eta}:\; Thomas\;plot\;F_{\eta}=(1-\frac{n}{N+1})$$$X_l\;X_i$: maximun, minimum value of total number of sample size(other notation for general terms was used as needed)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.