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ABSTRACT. Approximating the implied volatilities and estimating the model parameters are
important topics in quantitative finance. This study proposes an approximation formula for
short-maturity near-the-money implied volatilities in stochastic volatility models. A general
second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and
log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor ex-
pansion, an approximation formula for implied volatility is obtained for short-maturity near-
the-money call options in two stochastic volatility models: Heston model and SABR model. In
addition, we proposed a novel numerical method to estimate model parameters. This method
reduces the number of model parameters that should be estimated. Generating sample data on
log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fit-
ting the sample data in the above two models. Our method provides parameter estimates that
are close to true values.

1. INTRODUCTION

1.1. Overview. In this study, we investigate how to approximate implied volatilities and esti-
mate the parameters in the stochastic volatility models. Recently, the number of short-maturity
options traded in the market is explosively growing. Evaluating option prices under short-
maturity near-the-money circumstance has become crucial, however the implied volatility has
no closed-form formula in general. We aim to derive an approximation formula for short-
maturity near-the-money implied volatilities in stochastic volatility models: Heston model and
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SABR model. Moreover, we propose a novel numerical method for estimating model param-
eters. Considering sample data on log-moneyness, time-to-maturity, and implied volatility, we
can estimate the model parameters in the above two models using this approximation formula
and the least squares method.

We derive an approximation formula for implied volatility in stochastic volatility models as
follows. The implied volatility of a European call option is defined as the value of the volatility
parameter in the Black–Scholes formula such that the Black–Scholes call price is equal to the
actual option price. Let σ = σ(τ, x, ν) be the implied volatility of time-to-maturity τ, loga-
rithmic value x of the strike price divided by the forward stock price and stochastic volatility
ν. These notations are further described in later sections. We can obtain an approximation
polynomial function σH that satisfies

σ(τ, x, ν)− σH(τ, x, ν) = o((|τ |+ x2)3/2 + x2) as τ, x → 0

for the Heston model and σS that satisfies

σ(τ, x, ν)− σS(τ, x, ν) = o(|τ |+ x2) as τ, x → 0

for the SABR model. Refer to Remark 2.5 for the choice of such approximation orders. To
achieve this, we derive a general second-order nonlinear PDE for implied volatility. Using
regularity conditions and the Taylor expansion in this general PDE, the approximation formula
is derived for short-maturity near-the-money call options in two stochastic volatility models:
Heston model and SABR model.

Our proposed method is more improved than previous works in the following ways. Forde
et al. [1] derived a small-maturity expansion formula for call option prices and closed-form
expansion for implied volatility under the Heston model. Their method can be applied only
to the Heston model because their method highly depends on the closed-form solution of the
Heston call price. On the other hand, our method can be applied to various models which do not
have the closed-form solutions. Floc’h and Kennedy [2] presented a new formula for normal
or log-normal volatility, and calibrated the SABR model to particular market volatilities. Their
method is valid for data with a single maturity. However, our calibration method can use data
with various maturities, and thus we can obtain more accurate model parameters using a larger
range of data.

Furthermore, we propose a novel numerical method for estimating the model parameters us-
ing the above approximation polynomials σH and σS combined with the least-squares method.
We transform the problem of minimizing the mean squared error function into the problem of
minimizing elementary functions that can be explicitly expressed in closed-form. For the He-
ston model, the elementary function is obtained by solving a linear matrix equation, whereas
for the SABR model, it is obtained by solving a cubic algebraic equation. This method reduces
the number of model parameters that should be estimated. This is a new way of parameter
reduction which is not developed before.

The remainder of this paper is organized as follows. In Section 1.2, we provide several
related literatures. In Section 2, under the Heston model, we provide an approximation formula
for short-maturity at-the-money implied volatilities, and derive a novel numerical method for
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estimating the model parameters using empirical data. The same analysis is conducted for the
SABR model in Section 3. The final section summarizes the study. The technical details are
presented in the Appendix.

1.2. Related literature. Several authors have investigated methods of approximating implied
volatilities. Medvedev and Scaillet [3] derived an asymptotic expansion formula for implied
volatility under a two-factor jump-diffusion stochastic volatility model when the time-to-maturity
is small. They further proposed a simple calibration procedure for an arbitrary parametric
model for short-term near-the-money implied volatilities. In addition, Medvedev [4] derived
a formula for the zero time-to-maturity limit of the implied volatilities of European options
under stochastic volatility model. Feng et al. [5] studied the Heston stochastic volatility model
in a regime where the maturity is small but large compared to the mean reversion time of the
stochastic volatility factor. They derived a large deviation principle and computed the rate
function through a precise study of the moment-generating function and its asymptotic func-
tion. Gatheral et al. [6] calculated the first- and second-order deviations of implied volatility in
local volatility models, and obtained approximations, which they numerically demonstrated to
be highly accurate.

Many researchers have studied methods for estimating the model parameters. Alós et al.
in [7] obtained second-order approximation to the implied volatility for short maturities, and
calibrated the full set of parameters of the Heston model accurately by using the approxima-
tion. They also provided a quick calibration of a closed-form approximation of vanilla option
prices. Cui et al. [8] expressed calibration as a nonlinear least-squares problem, and exploited
a suitable representation of the Heston characteristic function.

2. HESTON MODEL

2.1. PDE derivation. This section introduces implied volatility in the Heston model [9] and
presents a second-order nonlinear PDE for implied volatility. The Heston model on a filtered
probability space (Ω,F , (Ft)t≥0,P) is expressed as

dνt = κ(θ − νt) dt+ ξ
√
νt dW

1
t ,

dSt = rSt dt+
√
νtSt dW

2
t ,

dW 1
t dW

2
t = ρ dt ,

where r ≥ 0 is a short rate, κ, θ, ξ > 0 and (W 1
t ,W

2
t )t≥0 is a correlated Brownian motion

with correlation −1 ≤ ρ ≤ 1 on the filtered probability space. Here, (St)t≥0 is the stock price
and (νt)t≥0 is the square of the volatility process. Let xt be the log-moneyness of a time-t call
price on the stock with strike price K and maturity T, that is, xt = log(K/Ste

r(T−t)). Then
we obtain

dxt =
νt
2
dt−

√
νt dW

2
t .
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The call price is given as

Call price = e−r(T−t)E[(ST −K)+|Ft]

= Ke−r(T−t)E[(e−xT − 1)+|xt, νt]

= Ke−r(T−t)C(t, xt, νt)

(2.1)

where C(t, x, ν) := E[(e−xT − 1)+|xt = x, νt = ν]. Meanwhile, the Black–Scholes (BS)
formula divided by Ke−r(T−t) is

CBS(x, σ
√
T − t) := e−xN

(−x+ σ2(T − t)

2σ
√
T − t

)
−N

(−x− σ2(T − t)

2σ
√
T − t

)
, (2.2)

where x is the log-moneyness of the stock price and N is the cumulative distribution function
of the standard normal distribution. By setting

C(t, x, ν) = CBS(x,w)

with τ = T − t and w = σ
√
τ , we can define the implied volatility σ as a function of τ, x, ν.

Proposition 2.1. In the Heston model, we let σ = σ(τ, x, ν) be the implied volatility function.
The function σ is infinitely differentiable and satisfies

0 =− σ3σττ − 1

2
σ4 +

1

2
ν
(
σ2 − 2xσσx + x2σ2

x −
1

4
σ4σ2

xτ
2 + σ3σxxτ

)
+ κ(θ − ν)σ3σντ +

1

2
ξ2ν

(
x2σ2

ν −
1

4
σ4σ2

ντ
2 + σ3σνντ

)
− ρξν

(
− xσσν −

1

2
σ3σντ + x2σνσx −

1

4
σ4σνσxτ

2 + σ3σxντ
)
.

(2.3)

Proof. First, we ensure that σ is infinitely differentiable. In our formulation, σ is a solution to

F (t, x, ν, σ) = C(t, x, ν)− CBS(x, σ
√
T − t) = 0 .

We can show the two functions CBS and C are infinitely differentiable using (2.2) and Ap-
pendix A, respectively. According to the implicit function theorem, the function σ is infinitely
differentiable in t, x, ν (thus, in τ, x, ν).

Next, we derive a PDE for implied volatility σ. Observe that

dC(t, xt, νt) =
(
Ct +

1

2
νt(Cx + Cxx) + κ(θ − νt)Cν +

1

2
ξ2νtCνν − ρξνtCxν

)
dt

+
√
νtCx dW

2
t + ξ

√
νtCν dW

1
t ,

which is obtained by applying Itô’s formula. The martingale property of the value process
C(t, xt, νt) = E[(e−xT − 1)+|Ft], 0 ≤ t ≤ T requires the drift term to be zero, which induces

Ct +
1

2
ν(Cx + Cxx) + κ(θ − ν)Cν +

1

2
ξ2νCνν − ρξνCxν = 0 ,

C(T, xT , · ) = (e−xT − 1)+ .
(2.4)
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The partial derivatives of C can be written as

Ct = −CBS
w wτ , Cx = CBS

x + CBS
w wx, Cxx = CBS

xx + 2CBS
xw wx + CBS

www
2
x + CBS

w wxx ,

Cν = CBS
w wν , Cνν = CBS

www
2
ν + CBS

w wνν , Cxν = CBS
xw wν + CBS

w wxν + CBS
wwwxwν .

Meanwhile, the partial derivatives of CBS are

CBS
x = −e−xN(d1) , C

BS
w = e−xN ′(d1) , C

BS
xx = e−xN(d1) + CBS

w

1

w
,

CBS
xw = CBS

w

(
− x

w2
− 1

2

)
, CBS

ww = CBS
w

( x2

w3
− w

4

)
,

where d1 =
−x+σ2(T−t)

2σ
√
T−t

. Using these equalities, we obtain

Ct = −CBS
w wτ ,

Cx + Cxx = CBS
w

( 1

w
− 2xwx

w2
+ (

x2

w3
− w

4
)w2

x + wxx

)
,

Cν = CBS
w wν ,

Cνν = CBS
w

(
(
x2

w3
− w

4
)w2

ν + wνν

)
,

Cxν = CBS
w

(
(− x

w2
− 1

2
)wν + wxν + (

x2

w3
− w

4
)wxwν

)
.

By substituting these in the PDE and canceling out the common term CBS
w , we obtain the PDE

of w

− wτ +
1

2
ν
( 1

w
− 2xwx

w2
+ (

x2

w3
− w

4
)w2

x + wxx

)
+ κ(θ − ν)wν

+
1

2
ξ2ν

(
(
x2

w3
− w

4
)w2

ν + wνν

)
− ρξν

(
(− x

w2
− 1

2
)wν + wxν + (

x2

w3
− w

4
)wxwν

)
= 0 .

Finally, by substituting σ(τ, x, ν)
√
τ for w and multiplying both sides by σ3√τ , we obtain the

desired PDE. □

2.2. Approximation formula. We provide an approximation formula for short-maturity near-
the-money implied volatilities in the Heston model.

Proposition 2.2. In the Heston model, we let σ = σ(τ, x, ν) be the implied volatility function.
The polynomial function

σH(τ, x, ν) =
√
ν +

ρξ

4
√
ν
x+

(1
8
ρξ

√
ν +

1

4
√
ν
κ(θ − ν) +

1

96
√
ν
(ρ2 − 4)ξ2

)
τ

+
(2− 5ρ2)ξ2

48ν
√
ν

x2 +
(
− ρ2ξ2

96
√
ν
+

κρξ

48
√
ν
− 5κθρξ

48ν
√
ν
+

(4− 3ρ2)ρξ3

128ν
√
ν

)
xτ

satisfies
σ(τ, x, ν)− σH(τ, x, ν) = o((|τ |+ x2)3/2 + x2) as τ, x → 0 .
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Proof. From Proposition 2.1, we know that the function σ is infinitely differentiable, and thus,
we can apply the Taylor expansion. A polynomial function σH that satisfies

σ(τ, x, ν)− σH(τ, x, ν) = o((|τ |+ x2)3/2 + x2) as τ, x → 0

is expressed as

σH(τ, x, ν)

= σH(0, 0, ν) +
∂σH

∂x
(0, 0, ν)x+

∂σH

∂τ
(0, 0, ν)τ +

1

2

∂2σH

∂x2
(0, 0, ν)x2 +

∂2σH

∂x∂τ
(0, 0, ν)xτ .

The partial derivatives in this equation are computed as follows. Letting x, τ → 0 in the
PDE (2.3),

0 = −1

2
σ4 +

1

2
νσ2 ,

thus, σ(0, 0, ν) =
√
ν. Differentiating both sides of the PDE in x, we obtain

0 = −2σ3σx + ρξνσσν ,

which gives σx(0, 0, ν) = ρξ
4
√
ν
. Similarly, differentiating the PDE in x twice and thrice,

σxx(0, 0, ν) =
(2− 5ρ2)ξ2

24ν
√
ν

, σxxx(0, 0, ν) =
(8ρ2 − 5)ρξ3

16ν2
√
ν

.

Next, we conduct the same procedure for variable τ. Differentiating the PDE in τ and letting
x, τ → 0, we have that

στ (0, 0, ν) =
1

8
ρξ

√
ν +

1

4
√
ν
κ(θ − ν) +

1

96
√
ν
(ρ2 − 4)ξ2 .

Differentiating the PDE in x, τ and letting x, τ → 0, we obtain

σxτ (0, 0, ν) = − ρ2ξ2

96
√
ν
+

κρξ

48
√
ν
− 5κθρξ

48ν
√
ν
+

(4− 3ρ2)ρξ3

128ν
√
ν

.

This yields the desired result.
□

Remark 2.3. A similar approximation polynomial for the squared implied volatility function
(σH)2 was computed in [1]. They obtained this result by analyzing asymptotic behavior for
Heston call options. On the other hand, we derived an approximation polynomial for the
implied volatility function σH itself by analyzing the general second-order nonlinear PDE in
Proposition 2.1.

Remark 2.4. In the above proposition, the approximation formula is of the order o((|τ | +
x2)3/2+x2), however, we can attain a higher-order approximation by computing higher-order
derivatives recursively using the same method.



186 H.CHOI, H.PARK, AND H.RYU

2.3. Parameter estimation. Using the volatility approximation result, we develop a novel
estimator for the model parameters from short-maturity near-the-money call prices. We formu-
late a subproblem as a linear equation, instead of optimizing all parameters simultaneously, and
then determine the best parameters (ν, κ, θ, ρ, ξ) that fit the particular short-maturity near-the-
money market data (xi, σi, τi)i=1,2,...,N . We aim to minimize the mean squared error (MSE)
function

ΦH(ν, κ, θ, ρ, ξ) =

N∑
i=1

w2
i

∣∣∣∣σi − σH(xi, τi, ν ;κ, θ, ρ, ξ)
∣∣∣∣2 .

for weights w1, w2, · · · , wN over (ν, κ, θ, ρ, ξ) ∈ R+ × R+ × R+ × [−1, 1] × R+. For sim-
plicity, we define variables γ = κθ, η = ρξ and ϕ = ξ2. Then the approximation function
σH(xi, τi, ν) = σH(xi, τi, ν ;κ, θ, ρ, ξ) can be written as

σH(xi, τi, ν) =
√
ν +

ρξ

4
√
ν
xi +

(1
8
ρξ

√
ν +

1

4
√
ν
κ(θ − ν) +

1

96
√
ν
(ρ2 − 4)ξ2

)
τi

+
(2− 5ρ2)ξ2

48ν
√
ν

x2i +
(
− ρ2ξ2

96
√
ν
+

κρξ

48
√
ν
− 5κθρξ

48ν
√
ν
+

(4− 3ρ2)ρξ3

128ν
√
ν

)
xiτi

=
√
ν +

xi
4
√
ν
η +

τi
√
ν

8
η +

τi
96

√
ν
η2 − 5x2i

48ν
√
ν
η2 − xiτi

96
√
ν
η2 − 3xiτi

128ν
√
ν
η3

+
( τi
4
√
ν
− 5xiτiη

48ν
√
ν

)
γ +

(
− τi

√
ν

4
+

xiτiη

48
√
ν

)
κ+

(4x2i − 4τi + 3xiτiη

96ν
√
ν

)
ϕ

= ai + biγ + ciκ+ diϕ .

The meaning of ai, bi, ci, di is straightforward. Define Ai = aiwi, Bi = biwi, Ci = ciwi,
Di = diwi and

ΨH(ν, η, γ, κ, ϕ) :=
N∑
i=1

w2
i

∣∣∣∣σi−σH(xi, τi, ν)
∣∣∣∣2 = N∑

i=1

∣∣∣∣σiwi−(Ai+Biγ+Ciκ+Diϕ)
∣∣∣∣2 .

The problem of minimizing the MSE function can be expressed as

inf
ν,η,γ,κ,ϕ

ΨH(ν, η, γ, κ, ϕ) = inf
ν,η

inf
γ,κ,ϕ

ΨH(ν, η, γ, κ, ϕ)

= inf
ν,η

inf
γ,κ,ϕ

N∑
i=1

∣∣∣∣σiwi − (Ai +Biγ + Ciκ+Diϕ)
∣∣∣∣2 .

For each ν and η, we can apply the linear regression method to

inf
γ,κ,ϕ

N∑
i=1

∣∣∣∣σiwi − (Ai +Biγ + Ciκ+Diϕ)
∣∣∣∣2 .
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The first-order condition with respect to (γ, κ, ϕ) leads to the least-squares solutionγν,η

κν,η

ϕν,η

 =

 ∑
Bi

2 ∑
BiCi

∑
BiDi∑

BiCi
∑

Ci
2 ∑

CiDi∑
BiDi

∑
CiDi

∑
Di

2

−1∑
Bi(σiwi −Ai)∑
Ci(σiwi −Ai)∑
Di(σiwi −Ai)

 (2.5)

assuming that 3×3 square matrix on the right-hand side is non-singular. Defining FH(ν, η) :=
ΨH(ν, η, γν,η, κν,η, ϕν,η), the minimization problem becomes

inf
ν,η,γ,κ,ϕ

ΨH(ν, η, γ, κ, ϕ) = inf
ν,η

inf
γ,κ,ϕ

ΨH(ν, η, γ, κ, ϕ) = inf
ν,η

FH(ν, η)

over (ν, η) ∈ R+ × R. Consequently, the minimization problem over the five variables is
reduced to the minimization problem over the two variables.

Remark 2.5. The ((|τ |+x2)3/2+x2)-order approximation formula is the lowest degree poly-
nomial for which our estimation method is valid. The least-squares solution obtained from the
(|τ | + x2)-order approximation polynomial is not uniquely determined because 3 × 3 matrix
in (2.5) is always singular. In addition, the linear regression method cannot be applied due to
the quadratic terms of parameters in the τ2-coefficient of the (τ2 + x2)-order approximation
polynomial.

2.4. Calibration. In this section, we calibrate the model parameters using the sample data.
For the Heston model, we assume that the short rate is zero, and that ν0 = 0.04, κ = 3,
θ = 0.04, ξ = 0.2, ρ = −0.2. Using the Andersen-Lake pricing method in [11], N = 45 call
option data with time-to-maturity τ ∈ T = {0.02, 0.04, 0.06, 0.08, 0.10} and log-moneyness
x ∈ X = {0,±0.01,±0.02,±0.03,±0.04} are generated. Let

{(τi, xi) : i = 1, 2, · · · , N} = T × X

and σi be the implied volatility corresponding to (τi, xi) for i = 1, 2, · · · , N. The implied
volatility surface is presented in Fig. 1. Using the approximation method with weights wi =
1/(σie

15(τi+|xi|)), the estimated parameters are ν0 = 0.040, κ = 2.995, θ = 0.048, ξ = 0.193,
ρ = −0.216, which are close to the true values.

3. SABR MODEL

3.1. PDE derivation. We conduct similar steps to the SABR model, and derive a PDE for
volatility in this model. The SABR model on a filtered probability space (Ω,F , (Ft)t≥0,P) is
expressed by

dνt = ανt dW
1
t ,

dFt = νtF
β
t dW 2

t ,

dW 1
t dW

2
t = ρdt ,

where α > 0, 0 ≤ β ≤ 1 and (W 1
t ,W

2
t )t≥0 is a correlated Brownian motion with correlation

−1 ≤ ρ ≤ 1 on the filtered probability space. Here, (Ft)t≥0 is the forward stock price and
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FIGURE 1. The implied volatility surface for the Heston model

(νt)t≥0 is the volatility process. Let xt be the log-moneyness of a time-t call price on the stock
with strike price K and maturity T, that is, xt = log(K/Ft). Then we have

dxt =
1

2
ν2t K

2β−2e(2−2β)xt dt− νtK
β−1e(1−β)xt dW 2

t .

Applying the same procedure used in 2.1, we obtain the following proposition.

Proposition 3.1. In the SABR model, let σ = σ(τ, x, ν) be the implied volatility function. Then
the function σ is infinitely differentiable and satisfies

0 =− σ3σττ − 1

2
σ4 +

1

2
ν2K2β−2e(2−2β)x

(
σ2 − 2xσσx + x2σ2

x −
1

4
σ4σ2

xτ
2 + σ3σxxτ

)
+

1

2
α2ν2

(
x2σ2

ν −
1

4
σ4σ2

ντ
2 + σ3σνντ

)
− ραν2Kβ−1e(1−β)x

(
− xσσν −

1

2
σ3σντ + x2σνσx −

1

4
σ4σνσxτ

2 + σ3σxντ
)
.

3.2. Approximation formula. An approximation formula for short-maturity near-the-money
implied volatilities in the SABR model is derived. The proof of the following proposition is
similar to that in Proposition 2.2.
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Proposition 3.2. In the SABR model, we let σ = σ(τ, x, ν) be the implied volatility function.
Then the polynomial function

σS(τ, x, ν) = νKβ−1

+
(1− β

2
νKβ−1 +

1

2
αρ

)
x+

((1− β)2

12
νKβ−1 +

2− 3ρ2

12ν
α2K1−β

)
x2

+
(
ν2K2β−2

((1− β)2

24
νKβ−1 +

2− 3ρ2

24ν
α2K1−β

)
+

β

4
ραν2K2β−2

)
τ

satisfies

σ(τ, x, ν)− σH(τ, x, ν) = o(|τ |+ x2) as τ, x → 0 .

Remark 3.3. The first-order approximation for short-maturity at-the-money (i.e. τ → 0,
x = 0) implied volatilities was computed in [10]. This proposition generalizes their result to
short-maturity near-the-money (i.e. τ → 0, x → 0) implied volatilities.

3.3. Parameter estimation. Using the volatility approximation result, we develop a novel
estimator for the model parameters from short-maturity near-the-money call prices. We for-
mulate a subproblem as a cubic equation, instead of optimizing all parameters simultaneously.
The main purpose is to determine the best parameters (ν, α, β, ρ) that fit the particular short-
maturity near-the-money sample data (Ki, xi, σi, τi)i=1,2,...,N . We aim to minimize the mean
squared error (MSE) function

ΦS(ν, β, α, ρ) =
N∑
i=1

w2
i

∣∣∣∣σi − σS(τi, xi, ν ;β, α, ρ)
∣∣∣∣2

for weights w1, w2, · · · , wN over (ν, β, α, ρ) ∈ R+ × [0, 1] × R+ × [−1, 1]. Define µ = α2,
and λ = αρ, then

σS(τi, xi, ν)

= νKβ−1
i +

(1− β

2
νKβ−1

i +
1

2
αρ

)
xi +

((1− β)2

12
νKβ−1

i +
2− 3ρ2

12ν
α2K1−β

i

)
x2i

+
(
ν2K2β−2

i

((1− β)2

24
νKβ−1

i +
2− 3ρ2

24ν
α2K1−β

i

)
+

β

4
ραν2K2β−2

i

)
τi

= νKβ−1
i +

(1− β)2ν3K3β−3
i

24
τi +

1− β

2
xiνK

β−1
i +

(1− β)2x2i
12

νKβ−1
i

+
(x2i
6ν

K1−β
i +

ντiK
β−1
i

12

)
µ+

(1
2
xi +

β

4
ν2τiK

2β−2
i

)
λ−

(ντiKβ−1
i

8
+

x2i
4ν

K1−β
i

)
λ2

= ai + biµ+ ciλ+ diλ
2 .
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The meaning of ai, bi, ci, di is straightforward. Define Ai = aiwi, Bi = biwi, Ci = ciwi,
Di = diwi and

ΨS(ν, β, µ, λ) :=

N∑
i=1

w2
i

∣∣∣∣σi−σS(τi, xi, ν)
∣∣∣∣2 = N∑

i=1

∣∣∣∣σiwi− (Ai+Biµ+Ciλ+Diλ
2)
∣∣∣∣2 .

The problem of minimizing the MSE function can be expressed as

inf
ν,β,µ,λ

ΨS(ν, β, µ, λ) = inf
ν,β

inf
µ,λ

ΨS(ν, β, µ, λ)

= inf
ν,β

inf
µ,λ

N∑
i=1

∣∣∣∣σiwi − (Ai +Biµ+ Ciλ+Diλ
2)
∣∣∣∣2 .

For each ν and β, from the first-order condition on µ,

∂

∂µ
ΨS(ν, β, µ, λ) = −2

N∑
i=1

Bi

(
σiwi −Ai −Biµ− Ciλ−Diλ

2
)
= 0 ,

we have
µ = P +Qλ+Rλ2 (3.1)

where

P =

∑N
i=1Bi(σiwi −Ai)∑N

i=1B
2
i

, Q = −
∑N

i=1BiCi∑N
i=1B

2
i

, R = −
∑N

i=1BiDi∑N
i=1B

2
i

.

Moreover, from the first-order condition on λ,

∂

∂λ
ΨS(ν, β, µ, λ) = −

N∑
i=1

(
Ci + 2Diλ

)(
σiwi −Ai −Biµ− Ciλ−Diλ

2
)
= 0 ,

and by combining this with (3.1), we obtain the cubic equation for λ(
− 2R

N∑
i=1

BiDi − 2
N∑
i=1

D2
i

)
λ3 +

(
− 3

N∑
i=1

CiDi −R
N∑
i=1

BiCi − 2Q
N∑
i=1

BiDi

)
λ2

+
(
−

N∑
i=1

C2
i −Q

N∑
i=1

BiCi + 2
N∑
i=1

Di(σiwi −Ai)− 2P
N∑
i=1

BiDi

)
λ

+
( N∑

i=1

Ci(σiwi −Ai)− P

N∑
i=1

BiCi

)
= 0 .

For each ν and β, because the above equation has at most three real solutions, the minimiza-
tion problem can be easily solved by evaluating the MSE for the three solutions. We denote
the minimizer by (µν,β , λν,β) and define FS(ν, β) := ΨS(ν, β, µν,β , λν,β). The minimization
problem becomes

inf
ν,β,µ,λ

ΨS(ν, β, µ, λ) = inf
ν,β

inf
µ,λ

ΨS(ν, β, µ, λ) = inf
ν,β

FS(ν, β) .
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Consequently, the minimization problem over the four variables is reduced to the minimization
problem over the two variables.

3.4. Parameter estimation. In this section, we calibrate the model parameters using the sam-
ple data. For the SABR model, we assume that the short rate is zero, and that ν0 = 0.8,
α = 0.2, β = 0.7, ρ = −0.4. The implied volatilities of N = 100 call option data with
time-to-maturity

τ ∈ T = {0.02, 0.04, 0.06, 0.08, 0.10}

and log-moneyness

x ∈ X = {−0.5,−0.45, · · · , 0.40, 0.45}

can be obtained numerically by Python package QuantLib, which is an open source library
used for quantative finance. Let

{(τi, xi) : i = 1, 2, · · · , N} = T × X .

The implied volatility surface is presented in Fig. 2. Using the approximation method with the
uniform weights, the estimated parameters are ν0 = 0.84, α = 0.195 β = 0.690, ρ = −0.385,
which are close to the true values.

FIGURE 2. The implied volatility surface for the SABR model
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4. CONCLUSION

In this study, we derived an approximation formula for implied volatilities, and then em-
ployed it to estimate the model parameters. For short-maturity near-the-money implied volatil-
ities, approximation formulas of order (|τ | + x2)3/2 + x2 and |τ | + x2 as τ, x → 0 were
computed for the Heston and SABR models, respectively. To achieve this, a general second-
order nonlinear PDE for the implied volatility was derived using the Feyman-Kac formula.
By employing regularity conditions and the Taylor expansion, we obtained the approximation
formula for the implied volatility.

We provided a novel numerical method for estimating the model parameters. This method
reduces the number of model parameters that should be estimated. The least-squares problem
over five variables is reduced to the minimization problem over two variables in the Heston
model. Similarly, the least squares problem over four variables is reduced to the minimization
problem over two variables in the SABR model. Generating sample data on log-moneyness,
time-to-maturity, and implied volatility, we estimated the model parameters fitting the sample
data in the above two models. Our method provides parameter estimates that are close to true
values.

APPENDIX A. PROOF OF THE REGULARITY OF THE IMPLIED VOLATILITY

In this section, we investigate the regularity of solutions to parabolic PDEs, and show that
the call price function C in (2.1) is infinitely differentiable. Let D be a bounded domain in
Rd+1 consisting of a time variable and d-dimensional state variables. For aij , bi, c, f , u :
D → R, consider a parabolic operator L defined as

Lu =
n∑
i,j

aij(t, x)
∂u

∂xixj
+

n∑
i

bi(t, x)
∂u

∂xi
+ c(t, x)u− ∂u

∂t
= f .

Theorem A.1. Assume that

Dm
x aij , Dm

x bi, Dm
x c, Dm

x f (0 ≤ m ≤ p)

are Hölder continuous (exponent α) in D. If u is a solution to Lu = f in D, then

Dm
x u, DtD

m
x u (0 ≤ m ≤ p+ 2, 0 ≤ k ≤ p)

exist and are Hölder continuous (exponent α) in D.

Theorem A.2. Assume that

Dk
t D

m
x aij , Dk

t D
m
x bi, Dk

t D
m
x c, Dk

t D
m
x f (0 ≤ m+ 2k ≤ p, k ≤ q)

are Hölder continuous (exponent α) in D. If u is a solution to Lu = f in D, then

Dk
t D

m
x u, (0 ≤ m+ 2k ≤ p+ 2, k ≤ q + 1)

exist and are Hölder continuous (exponent α) in D.



APPROXIMATION FORMULAS FOR SHORT-MATURITY NEAR-THE-MONEY IMPLIED VOLATILITIES 193

The proof of the two theorems above are on [12, pp.72-74].
Using these theorems, we can prove that the function C in (2.1) is infinitely differentiable.

Observe that C is a solution to parabolic PDE (2.4), in which the function aij satisfies the
ellipticity condition and c ≡ f ≡ 0. Considering the domain Dn = (0, T )× R× (1/n, n) for
n ∈ N, we can easily verify that the coefficients satisfy all conditions in the theorems. Hence,
the solution on the domain Dn is infinitely differentiable. Because differentiability is a local
property, we obtain the desired result.
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