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Butterfly Log-MAP Decoding Algorithm

Jia Hou, Moon Ho Lee, and Chang Joo Kim

Abstract: In this paper, a butterfly Log-MAP decoding algorithm
for turbo code is proposed. Different from the conventional turbo
decoder, we derived a generalized formula to calculate the log-
likelihood ratio (LLR) and drew a modified butterfly states dia-
gram in 8-states systematic turbo coded system. By comparing the
complexity of conventional implementations, the proposed algo-
rithm can efficiently reduce both the computations and work units
without bit error ratio (BER) performance degradation.

Index Terms: E-function, Log-MAP, turbo code.

L. INTRODUCTION

The iterative maximum a posteriori (MAP) decoder is a pow-
erful tool for channel coding such as turbo code [1]-[3). How-
ever, the implementation of the MAP decoder has high com-
plexity. Therefore, simple and fast decoding algorithms had
drawn much attention, e.g., [3}-{8]. On the other hand, it is well
known that the fast Fourier transform (FFT) is a useful graphic
butterfly algorithm to reduce the complexity and improve the
speed of computation, especially in the multidimensional arrays
[2]. Similarly, in this paper we generalized a modified states
diagram for LLR computation in the systematic turbo decoder,
which has a butterfly structure similar to the FFT. As a result, the
LLR computations now consist of several simple butterfly units
with different input information. By combining with a modified
E-function, the serial and parallel architectures are designed in
the following sections. In 3GPP standard, the 8-states system-
atic turbo code is defined for wireless communications and a
16-states case is used in satellite communications. In this paper,
we mainly investigated the 8-states systematic turbo code as an
example to explain our proposal. The numerical results demon-
strate that the proposed butterfly Log-MAP decoding algorithm
can efficiently reduce the number of work units and computa-
tions without BER performance degradation.

This paper is organized as follows. Section II first introduces
the Log-MAP decoding algorithm and a modified E-function
formula. Section IIT draws the butterfly states diagram and gen-
eralizes the LLR formula for 8-states systematic turbo decoder.
Next, several work units and algorithms are implemented. The
simulations and numerical results are shown in Section IV. Fi-
nally, we draw a conclusion and comment on the future research
direction.
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Fig. 1. Classical LLR function of turbo code.

II. LOG-MAP DECODING FOR SYSTEMATIC TURBO
CODES

Normally, the Log-MAP decoding algorithm need to calcu-
late all parameters of the metrics [1]. In a typical turbo decoder,
the LLR computations are used to export the updated results af-
ter collecting the forward and backward information. The clas-
sical LLR function in turbo code can be plotted simply, as shown
in Fig. 1. It can be mathematically written by

LLR(d,) = log(exp(A, + D° 4+ B,.1))
—log(exp(A, + D' + B, ,)), e}

where n denotes the time state, DP is the metric coefficient with
p € {0,1} on p path, A and B are forward and backward infor-
mation, respectively.

Now let us consider an 8-states systematic turbo decoder in
3GPP standard. Its trellis diagram is shown in Fig. 2 [4], [6].
In this figure, four groups are formed according to the different
branch values, where D presents the metric coefficient, A(j)
and B(j) are forward and backward information at the jth trellis
state, the solid lines and dashed lines denote the zero-path and
one-path, respectively. By setting two adjacent trellis states to
one metric group, which is noted as K, we can first calculate the
information group by group with the same branch metric values,
and finally generalize the LLR output of different branches by
using the Log-MAP decoding algorithm. The log-function of
K = ¢ metric group on p path from n time to n+ 1 time is given
by

L(K? = i) = log(exp(Ap + DP + Bpy1)
+exp(Ay, + D? + By, 14)), )
where A’, D', and B’ are the coefficients coming from the other
branch in the same metric group and the same path correspond-

ing to A, D, and B. Collecting all metric groups, the output of
LLR computation is obtained by

LLR = L° — L' = L(K°®) — L(KY), (3)

where L? is the log-likelihood on p path and L(K?) is the log-
likelihood of all the groups K on p path.
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Fig. 2. The trellis diagram of 8-states systematic turbo code.

The detail formula of path of the 8-states systematical turbo
code is given as

L(KP)
= log(exp(log(exp(L(KP = 1)) + exp(L(KP? = 4))))
+ exp(log(exp(L(K? = 2)) + exp(L(K? = 3))))), )

where the branch metric value D in the groups of {K = 1, K =
4} and that in the groups of {K = 2, K = 3} are the same,
as shown in Fig. 2. We now derive some useful equations for
modified E-function as below.

A. The LLR Computation of Log-MAP Decoding Algorithm in
Turbo Code [1]

For any trellis state, the LLR can be denoted by

exp(An + D° + Bny1)

LLRan sta .
ystate exp(A,, T D! +B7/1+1)

= log %

Generalizing all states in the trellis diagram, we have

8

> exp(An(state) + D° + B, (endstate))
state=1

8

) ; . exp(An(state) + D! + B, (endstate))
stale=
(6)

It calculates the difference between the sum of the states of zero-
path values and the sum of the states of one-path values.

LLR = log

B. Modified LLR Computation and E-Function

We now decompose all trellis states to four groups, as shown
in Fig. 2. For each group, the log-function is calculated as (2).
Combined with (3) and (4), the grouped LLR is presented as

LLR = L° - L(K®) — L(KY)
= log(exp(log(exp(L(K0 = 1)) + exp(L(K° = 4))))
+ exp(log(exp(L(K° = 2)) + exp(L(K® = 3)))))
— log(exp(log(exp(L(K" = 1)) + exp(L(K' = 4))))
+exp(log(exp(L(K" = 2)) + exp(L(K' = 3)))))
4
> exp(L(K°®))
= log 2= . (7)
Kglexp(L(Kl))

Taking (2) into (7), easily we have
exp(log(exp(An(1) + D4 + Boy1(5)) + - --

exp(log(exp(A,(1) + D1 + Bn+1(1)) + .-
exp(An(l) + D4+ Bpy1(8)) + -

LLR = log

=1lo . 8
exp(A,(1) + D1 +Bn+1(1))+~-~ ®
Consequently, this form can be generalized as
8
S>> exp(An(state) + D° + B, 11(endstate))
LLR = log Statsezl .
Y. exp(An(state) + D! + B], . (endstate))
state=1

&)
Obviously, (9) is equivalent to the function (6). To conveniently
implement the log-function, an E-function was proposed for
Log-MAP decoder [7]. The mathematical model is defined as

(A+D+B)E(A+D'+B)
2 log(exp(A + D + B) +exp(A’ + D' + B'))
=max((A+ D+ B),(A'+ D' + B'))

+log(l + exp(—|{(A+ D+ B) — (A’ + D' + B')|)). (10)

Normally, the E-function is implemented by using a look-up ta-
ble. We so call it Jacobian log-function, which is given by

aEb = max(a,b) + clog(1 + e~ la-bl/¢), (D
f(2) = clog(1 + e~lebl/ey, (12)
and
c = A/Lc/mag(c), (13)
-1 _
L, 06520 — 1) 1)
mag (o)

where A is the no noise amplitude, g is the number of the trans-
mitted bits, and signal-to-noise ratio (SNR) parameter mag(o)

is obtained as
1
_zQ(_).
g

(o) 2 1 1
= —exp|l——= ]+
mag(o o4/ - exp 552

(15)
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Fig. 8. Jacobian log-function with ¢ = 1.

Table 1. The parameters of E-function for turbo code.

Ey/NoldB] | A | © Le | mag(o) | ¢
0.00 15 | 1.22 | 1.33 1.25 8.99
0.50 15} 1.15 | 1.49 1.22 8.21
1.00 15| 1.09 | 1.67 1.19 7.50
1.50 15 | 1.03 | 1.88 1.16 6.84

The numerical results and some related parameters of E-
function are listed in Table 1. Usually, for turbo decoder, the
log-function of look-up table f(z) is shown as Fig. 3, where the
parameter ¢ = 1.

Especially, in the case of the 8-states systematical turbo code,
we find that the metric value D is equal to D’ if they are in the
same metric group and on the same path, as shown in Fig. 2.
Thus we can rewrite the E-function according to (4) and (10) as

(A+D+BEA +D+B)
= log(exp(A + D + B) + exp(4’ + D + B'))
= max((A+ D + B), (A’ + D + B')
+log(l + exp(—|(A+ D+ B)— (A'+ D+ B')|))
=D+ max((A+ B),(A" + B'))
+log(1 + exp(—|(A+ B) — (4’ + B")]))

=(A+B)E(A'+B')+ D, (16)

where the addition of the branch metric D in exponential is
taken out, then the complexity of the computation is reduced
apparently. In Fig. 4, the E-function is implemented by using

only four values (A, B) and (A’, B’), where LUT denotes the
look-up table of the Jacobian log-function.

III. PROPOSED BUTTERFLY LOG-MAP DECODING
ALGORITHM

To achieve a high efficiency in hardware implementation, a

better alternative is a joint design of modified E-function, gen-
eralized graphic formula and simplified architecture. It can be
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Fig. 5. Graphic algorithm for 8-states systematic turbo code.

done by using the butterfly Log-MAP decoding algorithm as be-
low.

As shown in Fig. 5, we propose an algorithm to calculate the
E-function as the butterfly graphic processing. Since the struc-
tures of the computation equations for all groups are the same,
we can derive a generalized pattern to denote these butterfly
units, as shown in Fig. 6. The mathematical model is
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Fig. 6. Generalized trellis graph for 8-states systematic turbo code.
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on the [(K — 1) mod 2] path, (18)
where |z| is the largest integer contained in z. In Fig. 6, we
can observe that the generalized LLR computations are based
on the Kth group and the modified E-function introduced in
Section II. Therefore, the generalized graphic algorithm can be
implemented as shown in Fig. 7. We call this unit as a 2 butter-
fly algorithm unit, which means that two E-Functions are used
in this butterfly structure. In this implementation, we take the
branch metric coefficient D out of the E-function as (16), and
calculate the log-function on {0, 1} path, respectively. Thus we

A,Q2K-1 E{An Q2K-D)+B,_ (K + 4)}
A (2K)+B_,(K)

n+l

K(mod2) path
(K- D)(mod2) path

AQK-1) B, (K
E( , ( ) B,..( )}

A (2K)

B,.(K)

PO S o A— AQK) B, (K+4)
where i=1,2,3,4
N7
L
K=1 + K=4 K=2 + K=3
Kei G(K) :K(mod2) path
G(K-1) (K- 1)(mod2) path
where i=12
Fig. 8. The final generalized algorithm for 8-states systematic turbo
code.

can write the output of the 2F butterfly algorithm unit as

on the [K mod 2] path, (19)
on the [(K — 1) mod 2] path. (20

Since the trellis diagram of 8-states systematical turbo code
is symmetric, we can easily generalize the groups further, as
shown in Fig. 8.

The proposed formulas directly lead the algorithm to the final
step, where the groups {K = 1, K = 4} or the groups {K =
2,K = 3} have the same branch values. The mathematical
models are given by

G(K) = {(An(2K = 1) + B (K + 4))
X B(An(2K) + Bay1 (K))}
X E{(An(2(5 = K) — 1) + Bay1 (5 — K)
X E(An(2(5 — K)) + Bny1((5 - K) +4))}
+(K(mod 2) x D(5 — K)
+(K — 1)(mod 2) x D(K))
on the [K mod 2] path, @n
G(K +1) = {(An (2K — 1) + Boy1 (K)
xE(An(2K) + Bpt1(K +4))}
xE{(An(2(6 - K) — 1)+ Bpn1((6 — K) +4))
X E(An(2(5 — K)) + Bni1(5 — K))}
H((K —1)(mod 2) x D(5 — K))
+K(mod 2) x D(K))

on the [(K — 1) mod 2] path. (22)

Obviously, in the final generalized formulas, two additions of
the branch metric are skipped. Though the final structure seems
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Fig. 11. The general block diagram of butterfly Log-MAP decoder.

to lead to little complexities than the previous introduction, in
fact, it reduces the total number of computation and work units,
since it generalizes two steps into only one. We implement the
final generalized butterfly algorithm, as shown in Fig. 9, and de-
sign the calculation of the branch value D, as shown in Fig. 10.
In these two figures, two additional butterfly structures are ex-
ploited to select the parameters from the different paths. As a
result, there are so many butterfly structures in the proposed de-
coding algorithm. It is the reason why we call it butterfly Log-
MAP decoding algorithm.

IV. SIMULATIONS AND NUMERICAL RESULTS

A general block diagram of butterfly Log-MAP decoder in 8-
states systematical turbo code is shown in Fig. 11. To efficiently
improve the performance of the Log-MAP decoder, in this sec-
tion, the serial and parallel architecture are investigated.
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Fig. 12. The parallel butterfly Log-MAP decoder architecture.

A. Serial Butterfly Log-MAP Decoder Architecture

As mentioned in the above section, the same butterfly units
are utilized for LLR computation, as shown in Fig. 9. Therefore,
we can easily design a block diagram, in which we only need
one butterfly unit, and the input information { A, B} serially go
through the calculator at different work units. Consequently, the
serial architecture can use the least work units and complexity
of the hardware. However, there is a demerit due to a longer
time of delay.

B. Parallel Butterfly Log-MAP Decoder Architecture

To solve the time delay problem, the parallel butterfly Log-
MAP decoder architecture is proposed, as shown in Fig. 12. The
input information { A, B} go through the calculator at the same
time. However, there occurs a different demerit due to higher
complexity than that of the serial case.

By comparing with the conventional parallel architecture, as
shown in Fig. 13 [8], the proposed butterfly Log-MAP decod-
ing algorithm offers a generalized butterfly pattern and a simple
computation to realize the systematical turbo decoder system.
Since the proposed algorithm is an equivalent transform from
the conventional Log-MAP decoding, its BER performance is
the same as that of the conventional case, as shown in Fig. 14.

Finally, the numerical results demonstrate that the serial but-
terfly architecture can reduce 81% additions from the conven-
tional design, and save 25% simulation time, as shown in Ta-
ble 2. In the case of parallel butterfly architecture, we find that
the number of the additions is reduced about 60%. and the sim-
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Table 2. VHDL design of the butterfly Log-MAP decoder for 8-states systematic turbo code.

Conventional LLR | Serial butterfly | Parallel butterfly
decoder [8] architecture architecture

The number of E-function 14 8 14
The additions in E-function 32 4 8
The outside additions for branch value No 2 4
Total additions 32 6 12

VHDL compiler time 00:04:50 00:03:40 00:01:50

Assembler 00:00:02 00:00:02 00:00:02

A&D(lj(l)A(i)D(l)B(S) A(5)D(2)B(3)A(6)D(2)B(T) 16" . .
Q @® &
y < s @
{ E ] l E ‘ AWGN channel

L(K®)

Fig. 13. The block diagram of the conventional paralle! implementation
scheme on O-path [8].

ulation time is improved about 75% from the conventional de-
coder.

V. CONCLUSIONS

In this paper, a novel butterfly Log-MAP decoding algorithm
for systematic turbo code is proposed. Different from the con-
ventional turbo codes, we derived a generalized butterfly pattern
to calculate the LLR in 8-states systematic turbo code systern.
By comparing the complexity of the conventional implemen-
tations, the proposed algorithm can efficiently reduce both the
operations of computation and work units without BER perfor-
mance degradation. In general, with the number of the states
increasing, the proposed algorithm can approach substantial im-
provement from the conventional design. The proposed algo-
rithm can be applied to other trellis codes, such as TCM and
turbo-TCM, similarly.
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