• Title/Summary/Keyword: Localization algorithm

Search Result 813, Processing Time 0.034 seconds

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Indoor Localization Algorithm Using Smartphone Sensors and Probability of Normal Distribution in Wi-Fi Environment (Wi-Fi 환경에서 센서 및 정규분포 확률을 적용한 실내 위치추정 알고리즘)

  • Lee, Jeong-Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1856-1864
    • /
    • 2015
  • In this paper, the localization algorithm for improving the accuracy of the positioning using the Wi-Fi fingerprint using the normal distribution probability and the built-in typed accelerometer sensor, the gyroscope sensor of smartphone in the indoor environment is proposed. The experiments for analyzing the performance of the proposed algorithm were carried out at the region of the horizontal and vertical 20m * 10m in the engineering school building of our university, and the performance of the proposed algorithm is compared with the fingerprint and the DR (dead reckoning) while user is moving according to the assigned region. As a result, the maximum error distance in the proposed algorithm was decreased to 2cm and 36cm compared with two algorithms, respectively. In addition to this, the maximum error distance was also less than compared with two algorithms as 16.64cm and 36.25cm, respectively. It can be seen that the fingerprint map searching time of the proposed algorithm was also reduced to 0.15 seconds compared with two algorithms.

Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle (자율주행 장치를 위한 수정된 유전자 알고리즘을 이용한 경로계획과 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Heo, Jung-Min;Jung, Sung-Young;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2009
  • This paper is presented simultaneous localization and mapping (SLAM) based on feature map and path-planning using modified genetic algorithm for efficient driving of autonomous vehicle. The biggest problem for autonomous vehicle from now is environment adaptation. There are two cases that its new location is recognized in the new environment and is identified under unknown or new location in the map related kid-napping problem. In this paper, SLAM based on feature map using ultrasonic sensor is proposed to solved the environment adaptation problem in autonomous driving. And a modified genetic algorithm employed to optimize path-planning. We designed and built an autonomous vehicle. The proposed algorithm is applied the autonomous vehicle to show the performance. Experimental result, we verified that fast optimized path-planning and efficient SLAM is possible.

Localization Scheme with Weighted Multiple Rings in Wireless Sensor Networks (무선 센서 네트워크에서 가중 다중 링을 이용한 측위 기법)

  • Ahn, Hong-Beom;Hong, Jin-Pyo
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.409-414
    • /
    • 2010
  • The applications based on geographical location are increasing rapidly in wireless sensor networks (WSN). Recently, various localization algorithms have been proposed but the majority of algorithms rely on the specific hardware to measure the distance from the signal sources. In this paper, we propose the Weighted Multiple Rings Localization(WMRL). We assume that each deployed anchor node may periodically emit the successive beacon signals of the different power level. Then, the beacon signals form the concentric rings depending on their emitted power level, theoretically. The proposed algorithm defines the different weighting factor based on the ratio of each radius of ring. Also, If a sensor node may listen, it can find the innermost ring of the propagated signal for each anchor node. Based on this information, the location of a sensor node is derived by a weighted sum of coordinates of the surrounding anchor nodes. Our proposed algorithm is fully distributed and does not require any additional hardwares and the unreliable distance indications such as RSSI and LQI. Nevertheless, the simulation results show that the WMRL with two rings twice outperforms centroid algorithm. In the case of WMRL with three rings, the accuracy is approximately equal to WCL(Weighted Centroid Localization).

Fault Management in Crossbar ATM Switches (크로스바 ATM 스위치에서의 장애 관리)

  • Oh Minseok
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.83-96
    • /
    • 2005
  • The multichannel switch is an architecture widely used for ATM (Asynchronous Transfer Mode). It is known that the fault tolerant characteristic can be incorporated into the multichannel crossbar switching fabric. For example, if a link belonging to a multichannel group fails, the remaining links can assume responsibility for some of the traffic on the failed link. On the other hand, if a fault occurs in a switching element, it can lead to erroneous routing and sequencing in the multichannel switch. We investigate several fault localization algorithm in multichannel crossbar ATM switches with a view to early fault recovery. The optimal algorithm gives the best performance in terms of time to localization but it is computationally complex which makes it difficult to implement. We develop an on-line algorithm which is computationally more efficient than the optimal one. We evaluate its performance through simulation. The simulation results show that the Performance of the on-line algorithm is only slightly sub-optimal for both random and bursty traffic. There are cases where the proposed on-line algorithm cannot pinpoint down to a single fault. We enumerate those cases and investigate the causes. Finally, a fault recovery algorithm is described which utilizes the information provided by the fault localization algorithm The fault recovery algorithm providesadditionalrowsandcolumnstoallowcellstodetourthefaultyelement.

Accuracy evaluation of ZigBee's indoor localization algorithm (ZigBee 실내 위치 인식 알고리즘의 정확도 평가)

  • Noh, Angela Song-Ie;Lee, Woong-Jae
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper applies Bayesian Markov inferred localization techniques for determining ZigBee mobile device's position. To evaluate its accuracy, we compare it with conventional technique, map-based localization. While the map-based localization technique referring to database of predefined locations and their RSSI data, the Bayesian Markov inferred localization is influenced by changes of time, direction and distance. All determinations are drawn from the estimation of Received Signal Strength (RSS) using ZigBee modules. Our results show the relationship between RSSI and distance in indoor ZigBee environment and higher localization accuracy of Bayesian Markov localization technique. We conclude that map-based localization is not suitable for flexible changes in indoors because of its predefined condition setup and lower accuracy comparing to distance-based Markov Chain inference localization system.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

Implementing Autonomous Navigation of a Mobile Robot Integrating Localization, Obstacle Avoidance and Path Planning (위치 추정, 충돌 회피, 동작 계획이 융합된 이동 로봇의 자율주행 기술 구현)

  • Noh, Sung-Woo;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.148-156
    • /
    • 2011
  • This paper presents an implementation of autonomous navigation of a mobile robot indoors. It explains methods for map building, localization, obstacle avoidance and path planning. Geometric map is used for localization and path planning. The localization method calculates sensor data based on the map for comparison with the real sensor data. Monte Carlo Localization(MCL) method is adopted for estimation of the robot position. For obstacle avoidance, an artificial potential field generates repulsive and attractive force to the robot. Dijkstra algorithm plans the shortest distance path from a start position to a goal point. The methods integrate into autonomous navigation method and implemented for indoor navigation. The experiments show that the proposed method works well for safe autonomous navigation.

A Study on Fisheye Lens based Features on the Ceiling for Self-Localization (실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.442-448
    • /
    • 2011
  • There are many research results about a self-localization technique of mobile robot. In this paper we present a self-localization technique based on the features of ceiling vision using a fisheye lens. The features obtained by SIFT(Scale Invariant Feature Transform) can be used to be matched between the previous image and the current image and then its optimal function is derived. The fisheye lens causes some distortion on its images naturally. So it must be calibrated by some algorithm. We here propose some methods for calibration of distorted images and design of a geometric fitness model. The proposed method is applied to laboratory and aile environment. We show its feasibility at some indoor environment.

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.