• Title/Summary/Keyword: Localization Scheme

Search Result 213, Processing Time 0.024 seconds

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

A Received Signal Strength-based Primary User Localization Scheme for Cognitive Radio Sensor Networks Using Underlay Model-based Spectrum Access

  • Lee, Young-Doo;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2663-2674
    • /
    • 2014
  • For cognitive radio sensor networks (CRSNs) that use underlay-based spectrum access, the location of the primary user (PU) plays an important role in the power control of the secondary users (SUs), because the SUs must keep the minimum interference level required by the PU. Received signal strength (RSS)-based localization schemes provide low-cost implementation and low complexity, thus it is suitable for the PU localization in CRSNs. However, the RSS-based localization schemes have a high localization error because they use an inexact path loss exponent (PLE). Thus, applying a RSS-based localization scheme into the PU localization would cause a high interference to the PU. In order to reduce the localization error and improve the channel reuse rate, we propose a RSS-based PU localization scheme that uses distance calibration for CRSNs using underlay model-based spectrum access. Through the simulation results, it is shown that the proposed scheme can provide less localization error as well as more spectrum utilization than the RSS-based PU localization using the mean and the maximum likelihood calibration.

WPAN에서 환경 변화에 적응력 있는 실내 위치 측위 기법 (Adaptive Indoor Localization Scheme to Propagation Environments in Wireless Personal Area Networks)

  • 임유진;박재성
    • 정보처리학회논문지C
    • /
    • 제16C권5호
    • /
    • pp.645-652
    • /
    • 2009
  • 모바일 환경에서 사용자의 위치를 기반으로 각종 정보나 서비스를 제공하는 위치 기반 서비스는 향후 정보 통신 산업의 핵심 응용으로 예상되고 있다. 위치 기반 서비스의 요소 기술로는 위치 측위 기술, 플랫폼 기술, 응용 서비스를 들 수 있다. 위치 측위 기술은 전송된 무선 신호를 측정 및 가공함으로써 측위 대상 단말기의 위치를 예측하는 기술이다. 본 논문에서는 IEEE 802.15.4 기반 환경에서 실내 측위 시스템 구축을 위한 적응력있는 위치 측위 기법을 제안한다. 제안 기법은 RSS(Received Signal Strength)를 이용한 삼각법 측위 시스템에서 위치 측위 정확도를 극대화할 수 있는 최적의 기준 AP를 선택하는 기법과 단말기 주변 전파 환경의 변화에 적응력있게 대처할 수 있는 단말기와 기준 AP사이의 거리 예측 기법으로 구성된다. 실내 측위 시스템을 실제로 구축함으로써 측위 정확도 측면에서의 제안 기법 성능을 검증하였다.

RF 센서와 INS을 이용한 UUV 위치 추정 (Underwater Localization using RF Sensor and INS for Unmanned Underwater Vehicles)

  • 박대길;곽경민;정재훈;김진현;정완균
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.170-176
    • /
    • 2017
  • In this paper, we propose an underwater localization scheme through the fusion of an inertial navigation system (INS) and the received signal strength (RSS) of electromagnetic (EM) wave sensors to guarantee precise localization performance with high sampling rates. In this localization scheme, the INS predicts the pose of the unmanned underwater vehicle (UUV) by dead reckoning at every step, and the RF sensors corrects the UUV position functions using the Earth-fixed reference when the UUV is located in underwater wireless sensor networks (UWSN). The localization scheme and state modeling were conducted in the extended Kalman filter framework, and UUV localization experiments were conducted in a basin environment. The scheme achieved reliable localization accuracy during long-term navigation, demonstrating the feasibility of exploiting EM wave attenuation as Earth-fixed reference sensors.

A Fine-grained Localization Scheme Using A Mobile Beacon Node for Wireless Sensor Networks

  • Liu, Kezhong;Xiong, Ji
    • Journal of Information Processing Systems
    • /
    • 제6권2호
    • /
    • pp.147-162
    • /
    • 2010
  • In this paper, we present a fine-grained localization algorithm for wireless sensor networks using a mobile beacon node. The algorithm is based on distance measurement using RSSI. The beacon node is equipped with a GPS sender and RF (radio frequency) transmitter. Each stationary sensor node is equipped with a RF. The beacon node periodically broadcasts its location information, and stationary sensor nodes perceive their positions as beacon points. A sensor node's location is computed by measuring the distance to the beacon point using RSSI. Our proposed localization scheme is evaluated using OPNET 8.1 and compared with Ssu's and Yu's localization schemes. The results show that our localization scheme outperforms the other two schemes in terms of energy efficiency (overhead) and accuracy.

The Insights of Localization through Mobile Anchor Nodes in Wireless Sensor Networks with Irregular Radio

  • Han, Guangjie;Xu, Huihui;Jiang, Jinfang;Shu, Lei;Chilamkurti, Naveen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2992-3007
    • /
    • 2012
  • Recently there has been an increasing interest in exploring the radio irregularity research problem in Wireless Sensor Networks (WSNs). Measurements on real test-beds provide insights and fundamental information for a radio irregularity model. In our previous work "LMAT", we solved the path planning problem of the mobile anchor node without taking into account the radio irregularity model. This paper further studies how the localization performance is affected by radio irregularity. There is high probability that unknown nodes cannot receive sufficient location messages under the radio irregularity model. Therefore, we dynamically adjust the anchor node's radio range to guarantee that all the unknown nodes can receive sufficient localization information. In order to improve localization accuracy, we propose a new 2-hop localization scheme. Furthermore, we point out the relationship between degree of irregularity (DOI) and communication distance, and the impact of radio irregularity on message receiving probability. Finally, simulations show that, compared with 1-hop localization scheme, the 2-hop localization scheme with the radio irregularity model reduces the average localization error by about 20.51%.

The 3 Dimensional Triangulation Scheme based on the Space Segmentation in WPAN

  • 이동명;이호철
    • 공학교육연구
    • /
    • 제15권5호
    • /
    • pp.93-97
    • /
    • 2012
  • Most of ubiquitous computing devices such as stereo camera, ultrasonic sensor based MIT cricket system and other wireless sensor network devices are widely applied to the 2 Dimensional(2D) localization system in today. Because stereo camera cannot estimate the optimal location between moving node and beacon node in Wireless Personal Area Network(WPAN) under Non Line Of Sight(NLOS) environment, it is a great weakness point to the design of the 2D localization system in indoor environment. But the conventional 2D triangulation scheme that is adapted to the MIT cricket system cannot estimate the 3 Dimensional(3D) coordinate values for estimation of the optimal location of the moving node generally. Therefore, the 3D triangulation scheme based on the space segmentation in WPAN is suggested in this paper. The measuring data in the suggested scheme by computer simulation is compared with that of the geographic measuring data in the AutoCAD software system. The average error of coordinates values(x,y,z) of the moving node is calculated to 0.008m by the suggested scheme. From the results, it can be seen that the location correctness of the suggested scheme is very excellent for using the localization system in WPAN.

4대의 이동형 로봇을 활용한 센서 노드 위치확정 방법 (Sensor Node Localization Scheme using Four Mobile Robots)

  • 이우식;김남기
    • 한국통신학회논문지
    • /
    • 제36권5A호
    • /
    • pp.521-528
    • /
    • 2011
  • 센서 네트워크 환경에서 센서 노드의 위치를 추정하는 일은 매우 중요하다. 센서 네트워크에서 GPS 신호 없이 노드의 위치 알아내기 위한 방법으로는 앵커 로봇을 활용하는 방법이 대표적이다. 따라서 본 논문은 4대의 이동형 앵커 로봇을 활용하여 빠른 시간 안에 효율적으로 센서 노드의 위치를 확정하는 4-Robot Localization Scheme(4RLS)방법을 제안한다. 그리고 실제 구현과 분석을 통해 4RLS 기법이 3 대의 이동로봇을 활용하는 기존 방법에 비해 성능이 개선됨을 보인다.

광신호 기반의 마이크로 센서 노드 위치 인식 시스템을 위한 파라미터 식별 (The Parameter Identification for Localization Scheme of the Optics-Based Micro Sensor Node)

  • 전지훈;이민수;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.81-86
    • /
    • 2013
  • In this paper, the parameter identification for localization scheme for the optics-based micro sensor node is conducted. We analyzed short measurement range problem which can be occurred in optical based micro sensor node localization method using a time of flight. And we set up the theory for distance and maximum reflected laser power to overcome the problem by identifying hardware parameters like laser power, effective area of MEMS CCR, sensitivity of photodetector, and so on. Experimental results of measurement of maximum reflected laser power were compared with results of the theory. By using the theory, we can identify hardware parameters of localization scheme to measure particular position of the optics-based micro sensor node.

A Development of Distance Measurement Scheme for Localization System in Wireless Personal Area Network

  • Lee, Dong-Myung
    • 공학교육연구
    • /
    • 제13권2호
    • /
    • pp.7-11
    • /
    • 2010
  • As the development of the computer and communication technologies, the ubiquitous society can be realized to the world early in the future. Thus, the localization system in Wireless Personal Area Network (WPAN) is required for many users of ubiquitous society to provide the ubiquitous computing based applications in respective of anytime and anywhere. In this paper, we propose the distance measurement scheme that is based on the distance measurement using RSSI (Received Signal Strength Indicator) of sensor module considering of two distance conditions for the localization system using Zigbee in WPAN. Also, the localization errors of the proposed scheme are analyzed in the three scenarios that the mobile module tracks in the in $6m{\times}6m$ scaled experimentation area. In addition to this, the monitoring subsystem is developed using GUI (Graphical User Interface) in order to monitor the location of the moving objects accurately and user-friendly.

  • PDF