• Title/Summary/Keyword: Local clustering

Search Result 341, Processing Time 0.029 seconds

A Study on Energy Efficient Self-Organized Clustering for Wireless Sensor Networks (무선 센서 네트워크의 자기 조직화된 클러스터의 에너지 최적화 구성에 관한 연구)

  • Lee, Kyu-Hong;Lee, Hee-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.180-190
    • /
    • 2011
  • Efficient energy consumption is a critical factor for deployment and operation of wireless sensor networks (WSNs). To achieve energy efficiency there have been several hierarchical routing protocols that organize sensors into clusters where one sensor is a cluster-head to forward messages received from its cluster-member sensors to the base station of the WSN. In this paper, we propose a self-organized clustering method for cluster-head selection and cluster based routing for a WSN. To select cluster-heads and organize clustermembers for each cluster, every sensor uses only local information and simple decision mechanisms which are aimed at configuring a self-organized system. By these self-organized interactions among sensors and selforganized selection of cluster-heads, the suggested method can form clusters for a WSN and decide routing paths energy efficiently. We compare our clustering method with a clustering method that is a well known routing protocol for the WSNs. In our computational experiments, we show that the energy consumptions and the lifetimes of our method are better than those of the compared method. The experiments also shows that the suggested method demonstrate properly some self-organized properties such as robustness and adaptability against uncertainty for WSN's.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

Spatial Clustering Method Via Generalized Lasso (Generalized Lasso를 이용한 공간 군집 기법)

  • Song, Eunjung;Choi, Hosik;Hwang, Seungsik;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.561-575
    • /
    • 2014
  • In this paper, we propose a penalized likelihood method to detect local spatial clusters associated with disease. The key computational algorithm is based on genlasso by Tibshirani and Taylor (2011). The proposed method has two main advantages over Kulldorff's method which is popoular to detect local spatial clusters. First, it is not needed to specify a proper cluster size a priori. Second, any type of covariate can be incorporated and, it is possible to find local spatial clusters adjusted for some demographic variables. We illustrate our proposed method using tuberculosis data from Seoul.

The Lifespan of Social Hub In Social Networking Sites: The Role of Reciprocity, Local Dominance and Social Interaction

  • Han, Sangman;Magee, Christopher L.;Kim, Yunsik
    • Asia Marketing Journal
    • /
    • v.17 no.1
    • /
    • pp.69-95
    • /
    • 2015
  • This paper examines a highly used social networking site (SNS) by studying the behavior of more than 11 million members over a 20 month period. The importance of the most highly active members to the overall network is demonstrated by the significant fraction of total visits by extremely active members in a given period but such members have surprisingly short lifespans (an average of only 2.5 months) as social hubs. We form and test a number of hypotheses concerning these social hubs and the determinants of their lifespan. We find that the speed of achieving social hub status increases the lifespan of a social hub. The norm of reciprocity is strongly confirmed to be present in the social hub population as visits are reciprocated. We also find that increasing local dominance in terms of activities over neighboring agents leads to a longer lifespan of a social hub. Contrary to expectations, local clustering in the vicinity of social hubs is smaller (rather than larger) than overall clustering. We discuss managerial implications in the paper.

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.

Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering (비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화)

  • 김형석;박진우;김희수;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1937-1945
    • /
    • 1999
  • In paper, we propose a 3D polygonal mesh simplification technique based on vertex clustering. The proposed method differentiates the size of each cluster according to the local property of a 3D object. We determine the size of clusters by considering the normal vector of triangles and the vertex distribution. The subdivisions of cluster are represented by octree. In this paper, we use the Harsdorff distance between the original mesh and the simplified one as a meaningful error value. Because proposed method adaptively determine the size of cluster according to the local property of the mesh, it has smaller error as compared with the previous methods and represent the small regions on detail. Also it can generate a multiresolution model and selectively refine the local regions.

  • PDF

Sales Forecasting Model Considering the Local Environment

  • Kim, Chul Soo;Oh, Su Min;Park, So Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.849-858
    • /
    • 2012
  • Today, local environmental factors has an influence on our society. Local environmental factors, as well as weather-related natural phenomena, social phenomena are also included. In this paper, numeric factors and categorical factors were analyzed, looking for a local environmental factors affecting the company's sales.Sales model by performing a regression analysis based on this was implemented.Sales model considering the local environment had an accuracy of 88.89%.

Optimizing Speed For Adaptive Local Thresholding Algorithm U sing Dynamic Programing

  • Due Duong Anh;Hong Du Tran Le;Duan Tran Duc
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.438-441
    • /
    • 2004
  • Image binarization using a global threshold value [3] performs at high speed, but usually results in undesired binary images when the source images are of poor quality. In such cases, adaptive local thresholding algorithms [1][2][3] are used to obtain better results, and the algorithm proposed by A.E.Savekis which chooses local threshold using fore­ground and background clustering [1] is one of the best thresholding algorithms. However, this algorithm runs slowly due to its re-computing threshold value of each central pixel in a local window MxM. In this paper, we present a dynamic programming approach for the step of calculating local threshold value that reduces many redundant computations and improves the execution speed significantly. Experiments show that our proposal improvement runs more ten times faster than the original algorithm.

  • PDF

Numerical simulation of structural damage localization through decentralized wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.938-942
    • /
    • 2007
  • The proposed algorithm tries to localize damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides an effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

  • PDF

Efficient Multistage Approach for Unsupervised Image Classification

  • Lee Sanghoon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.428-431
    • /
    • 2004
  • A multi-stage hierarchical clustering technique, which is an unsupervised technique, has been proposed in this paper for classifying the hyperspectral data .. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using a context-free similarity measure. This study applied the multistage hierarchical clustering method to the data generated by band reduction, band selection and data compression. The classification results were compared with them using full bands.

  • PDF