Optimizing Speed For Adaptive Local Thresholding Algorithm
Using Dynamic Programing

Duong Anh Duc, Tran Le Hong Du, Tran Duc Duan
Faculty of Information Technology
University of Natural Sciences, VNU-HCMC
227 Nguyen Van Cu Street, Dist 5, HCM City, Vietnam

Tel : +84-8-8308117 Fax : +84-8-8350096
Email: {daduc, tlhdu, tdduan}@fit.hcmuns.edu.vn

Abtract:
Image binarization using a global threshold value [3] performs at high speed, but usually results in undesired binary
images when the source images are of poor quality. In such cases, adaptive local thresholding algorithms [1][2][3] are
used to obtain better results, and the algorithm proposed by A.E.Savekis which chooses local threshold using fore-
ground and background clustering [1] is one of the best thresholding algorithms. However, this algorithm runs slowly
due to its re-computing threshold value of each central pixel in a local window MxM . In this paper, we present a
dynamic programming approach for the step of calculating local threshold value that reduces many redundant compu-
tations and improves the execution speed significantly. Experiments show that our proposal improvement runs more

ten times faster than the original algorithm.

Keywords: Adaptive Local Thresholding, Binarization, Image Processing, Dynamic Programming.

1. INTRODUCTION

Image binarization algorithms are often used in almost
problems involving in image processing or computer vi-
sion domain. It is the basic procedure that is used in vari-
ous algorithms; therefore, the speed problem is very im-
portant. Since the source images may contain multiple
object classes of varying color, non-uniform illumination,
and camera distortions, the global threshold algorithms do
not work well on those images [2]. In such situations, the
adaptive local threshold algorithms are used to obtain bet-
ter results. The adaptive threshold algorithm using fore-
ground and background clustering has proven its efficien-
cies [1][2][3). It computes threshold value of each central
pixel in its surround local window
MxM, M =79,11... We have found that, the com-

puting threshold of each local window has numerous re-
dundant operators. As moving the window in each step,
the overlap area is (M —1)xM . Therefore, the number

of foreground pixels and background pixels that are re-
calculated in overlap area is large. Thus, we propose using
dynamic programming to reduce redundant computations.
This approach can immediately determine threshold value
of each pixel on various window sizes as needed.

2. PREVIOUS WORK

In order to classify gray images into bi-level images,

there are two approaches: using global threshold and

using adaptive local threshold.

Let Img be the source image with size WxH ,

Img[i][j]e[0.255) Vie[1.H]} je[l.W], and
r

ImgB is the result binary image.

438

2.1. Global Thresholding Method

According to this method, all pixels are compared to a
same value in the thresholding procedure. This value
may be constant, or be chosen from image histogram [3].
The implementation of this method is showed as follows.

Determine GlobalThreshold (using histogram, or the
average value of pixels, ...)
Foreachi e [1.H] do
Foreachj € [1..W] do
If Img[i][j] < GlobalThreshold Then
ImgB[i][j] « 1
Else
ImgB[i]{j] « 0
End If
End For
End For

Result image ImgB (size WxH) is a binary image that
i§ classified from source image Img. The algorithm com-
plexity is WxH plus the cost of calculating threshold

value (entirely about O(N?), N - image size).
2.2. Adaptive Local Thresholding Method

Unlike global thresholding method, this approach com-
pute an independent threshold for each pixel over a local
window whose center is the pixel being binarizing (M

— window size). Each algorithm following this approach
has a different method of determining threshold values
on local window. In [1], each pixel is assigned to a
background or foreground level (using global threshold),
then the threshold value is determined by the average of
two background/foreground clusters. Let consider a brief
original algorithm:

Ry L »
M
M
N
N
Fig 1. Computing threshold value on local window

R;

We want to compute threshold of pixel (7,). With
each point (7, j) , let R;; be the set of pixels in its local
window size M . We has,

M M M M
R, =<(u,v)/ |~ — i+ VE|j——, j+—
. {(uv) ue{z 5 i z]v |:] 5 J 2}}

’

Using a global threshold to clustering all pixels in Rl.j
into two set, FgR; — foreground set and BgR, -
background:
(u,v) /(u,v)eR; A
gRi,' = (1
Im g[u][v] < GlobalThreshold
(u,v) /(u,v) e R; A
gR; = 2
Im g[u][v] > GlobalThreshold

Then, compute:

SFR, = Y Img[ul[v], and

(u.v)eFgR,

SFR,
LFV, = ——-—— 3)
Card (FgR,)

SBR, = Y Imglu][v], and

(u.v)eBgR;

SBR,
BV[[[. A—

Card (BgR)
And finally, local threshold value of pixel (i, j) is:
LFY, +LBY,
: 2
The original algorithm is illustrated in the following
code:

4)

LT hres/;j =

For each (1,j) € [1..W]x][1..H] do
SF« 0
SB« 0
CardF « 0
CardB « 0
For each (u,v) € Rij do
If Img[u}[v] < GlobalTreshold Then

SF « SF + Img[u][v]
CardF « CradF + 1
Else
SB « SB + Img[u}[v]
CardB « CradB + 1
End If
End For
LocalThreshold = (SF/CardF + SB/CardB)/2
If Img[i]{j] £ LocalThreshold Then
ImgB[i][j] < 1
Else
ImgBI[i]{j] « O
End If
End For

The complexity of this algorithm is estimated to be about
WxHxM? (~ O(N*xM?)). 1t depends on M , the

window size, the larger M is, the slower the total a go-
rithm speed is.

3. APPLYING DYNAMIC PROGRAMMING
TO OPTIMIZE THE ALGORITHM SPEED

(LY

r} Fset m Bset = [1..i]x[1..j]

(tj)

Fig 2. FgSet and BgSet

In the rectangle specified by two points (1,1) and (i, /),
there are two sets using clustering by global threshold,
FgSet,, — foreground set and BgSer;, - background:

FgSet, :{(”’V) [(u,v)/1Su<inl svsj/\} ,
" |Imglu][v] < GlobalThrehold

BgSet, :{(u"’) /(u,v)/1Su<ind Sij/\} o
" |Img[u][v] 2 GlobalThrehold

Then, compute:

SFP, = Y Imglu][v],and

(u,v)eFgSet;

CFP; = Card(FgSet;) '7)

SBE, = z Im g[u][v], and
(u,v)eBgSetU
CBPF,; = Card (BgSet;) (8)

It can be inferred the following recursive formulae to
compute values of SFP,,CFF,,SBF;,CBP,:

i» i i’

239

SFF, ;. +SFF_; - SFF_, ;. +Imgli][j],
SFP,, = if Img[i][/] < GlobalThreshold)
SFP,, +SFP_,, - SFP., ., otherwise
and ,
CFR, ,+CFF_; CFPU]+1
CFP, = if Tmgli][j] < GlobalThreshold (10)
CFF,,, +CFP_ , —CFF_, , ,, otherwise
SBE,,., +SBP_, ,—SBP_, ., +mglilLj],
SBP,, = if Img[illj]> GlobalThreshold (11
SBF, ;| +SBF_, ; = SBF,_, ;_,, otherwise
and
CBP,,, +CBP_,, ~CBP_, +l,
CBP, = if Tmg[i1[/]> GlobalThreshold (12)
CBF,; ,+CBP_ , —CBP,_, ,_, otherwise
(R) ! r
t
(9))
b
(W.H)

Fig 3. Computing values of window R;;

After all values SFF,,CFP,;,SBF,,CBP,; have been
computed, Vie[l..H],Vje[l.W], the threshold of

each pixel (i, j) on its local window MxM (specified

M . M M M)can be
2

by two points G- ,__)(md(j+_2_l+

computing the values

Card (BgR,)

quickly determined by
SFgR;,Card (FgR,),SBgR,
(3,4) as follows:

y’

M
b:l+—>

M
Let 1= j- 2 =i=2r=j+ 2, -

[:left,t:top, r:right,b:bottom

With [,t,r, b, they define on the image a number of

rectangles:

R =(LI-1¢-1),
R =(LLrt—1), R, =(LLI-1b),
R4 :(I,l,r,b),and RS :(l,t,l",b)

440

We can values (3, 4) of rectangle

R, =(l,t,r,b), from R,. R», R;, and R4.

compute

R,=R,—R,—R,+R,.

Thus, we have:

SFgR, = SFF,, —-SFF,, ,—SFE_,, +SFF_,, (9
and
Card(FgR,) = CFP,, ~CFP,,, - CFP_,, +CFP_, (10)
SBgR; = SBP,, — SBF,,, - SBP,_,, +SBF_,,, (11)
and
Card(BgR;)=CBF,, - CBF,,., - CBE_,, + CBF_,_,(12)

In order to reduce book-keeping cost, arrays SF, CF, SB,
and CB are used from column 0, and row 0.

/{Firstly, compute all values of SF,CF,SB,CB
Foreachi e [1,H] do
Foreachj e [1,W] do
If Img[i][j] £ GlobalThreshold Then
SF(1](3]1 = SF(i]j-11 + SF{-1]] -
SF{i-1]{j-1 + Img[il[j]
CF[i](j] = CF(i](j-11 + CF[i-1]i] -
CF[i-1][j-1]1 + 1
SB(i]{j] = SB[i](j-1] + SB[i-1][j] -
SB[i-1][j-1]
CB[i]{j]1 = CBIi]-1] + CBi-1][j] -
CB[i-1][j-1]
Else
SF[i][j] = SF[i](j-1] + SF[i-1][j] -
SF[i-1][j-1]
BF(i][j] = BF{i][j-1] + BE[i-1][j] -
BF[i-1]{j-1]
SBIi][j] = SBi][j-1] + SB[i-1](j] -
SB{i-11j-1] + Imefil[j]
CBIi](j]1 = CBIi][j-1] + CB[i-1][j] -
CB[i-1][j-1]1 + 1
End If
End For
End For

// Then, compute threshold of each pixel and classify it
For each (i,j) € [1,H]x[1,W] do
l1=j-M/?2
t=1i-M/2
r=j+M/72
b=1i+M/2
FGg = SF[b][r] - SF[t-1][r] + SF[t-1][I-

: SF[b]fl-1] -
1
CFGg = CF[b][r] — CF[b][I-1] -
1]{1-1]
BGg = SB[b][r] — SB[b][l-1] — SB[t-1][r] + SBJt-
1)[1-1]
CBGg =
1]0-1]
LocalThreshold = (FGg/CFGg + BGg/CBGg)/2
If Img[i](j] £ LocalThreshold Then

CF[t-1][r] + CF[t-

CB[b][r] - CB[b]{}-1] - CB[t-1][r] + CB[t-

ImgB[i][j] « 1
Else
ImgBJ[i][j] « 0
End If
End For

Our algorithm produces the same binary image result as
the original one, but its complexity does not depend on

the local window size M , and the complexity is ap-

proximately 2xWxH (z O(N*))

4. EXPERIMENTS AND CONCLUSIONS

4.1. Experiments

We have implemented both the original algorithm and
our algorithm on MS Visual C++ 6.0 (HP Workstation
X2000 Pentium IV, 1.4 GHz, 512 MB RAM, Windows
XP OS), and tested them on the same image set (images
size about 800x600) with variety of window size (M).
The results are showed in Table 1:

Normal Optimized

M (milliseconds) (milliseconds)
11 7687.4 621.425

15 9659.825 585.2

21 18704.61 602.9625
25 25939.4 618.8

29 32396 574.9333
33 41996.4 620.9

37 51981.65 601.125

Table 1: Comparison time of performance

! Speed comparision

60000
= 50000 ;
3 e
5 40000 *7‘“ —
9 : ——Qriginal
8 30000 1 = i algorithm
g 20000 -% Optimized
F 40000 / ____ algorithm

| 0 4

11 15 21 25 29 33 37
M (Window size)

Fig 4. Comparison time of performance in graph

4.2, Conclusions

Our proposed algorithm retains the quality of the re-
sulted binary image, but the execution speed is improved
significantly. This improvement can benefit various pro-
cesses in image processing or computer vision domain.

References

[1] Andreas E. Savakis, “Adaptive document image
thresholding using foreground and background
clustering”, Proceedings of International Confer-
ence on Image Processing ICIP98, 1998.

[2] Xiaoyi Jiang, “Adaptive Local Threshold by Verifi-
cation-Based Multithreshold Probing with Aprlica-
tion to Vessel Detection in Retinal Images”, /EEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol 25, Jan 2003.

[3] Rafael C.Gonzalez and Richard E. Woods, Digital

Image Processing, Prentice Hall Inc, pp 595-611,
2002

441

