• Title/Summary/Keyword: Local Search Algorithm

Search Result 447, Processing Time 0.021 seconds

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model (단일변이 탐색법과 유전 알고리즘에 의한 탱크모형 매개변수 결정 비교 연구)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Je-Myung;Lee, Eun-Jung;Kang, Moon-Seong;Park, Seung-Woo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The objectives of this study are to apply univariate search and genetic algorithm to tank model, and compare the two optimization methods. Hydrologic data of Baran watershed during 1996 and 1997 were used for correction the tank model, and the data of 1999 to 2000 were used for validation. RMSE and R2 were used for the tank model's optimization. Genetic algorithm showed better result than univariate search. Genetic algorithm converges to general optima, and more population of potential solution made better result. Univariate search was easy to apply and simple but had a problem of convergence to local optima, and the problem was not solved although search the solution more minutely. Therefore, this study recommend genetic algorithm to optimize tank model rather than univariate search.

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

An Adaptive Search Range Decision Algorithm for Fast Motion Estimation using Local Statistics of Neighboring Blocks (고속 움직임 추정을 위한 인접 블록 국부 통계 기반의 적응 탐색 영역 결정 방식)

  • 김지희;김철우;김후종;홍민철
    • Journal of Broadcast Engineering
    • /
    • v.7 no.4
    • /
    • pp.310-316
    • /
    • 2002
  • In this paper, we propose an adaptive search range decision algorithm for fast motion estimation of video coding. Block matching algorithm for motion vector estimation that improves coding efficiency by reduction of temporal redundancy has trade-off problem between the motion vector accuracy and the complexity. The proposed algorithm playing as a pre-processing of fast motion estimation adaptively determines the motion search range by the local statistics of neighboring motion vectors. resulting in dramatic reduction of the computational cost without the loss of coding efficiency. Experimental results show the capability of the proposed algorithm.

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

Ant Colony System for Vehicle Routing Problem with Simultaneous Delivery and Pick-up under Time Windows (시간제약하 배달과 수거를 동시에 수행하는 차량경로문제를 위한 개미군집시스템)

  • Lee, Sang-Heon;Kim, Yong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.160-170
    • /
    • 2009
  • This paper studies a vehicle routing problem variant which considers customers to require simultaneous delivery and pick-up under time windows(VRPSDP-TW). The objective of this paper is to minimize the total travel distance of routes that satisfy both the delivery and pick-up demand. We propose a heuristic algorithm for solving the VRPSDP-TW, based on the ant colony system(ACS). In route construction, an insertion algorithm based ACS is applied and the interim solution is improved by local search. Through iterative processes, the heuristic algorithm drives the best solution. Experiments are implemented to evaluate a performance of the algorithm on some test instances from literature.

Optimal Design of Dynamic System Using a Genetic Algorithm(GA) (유전자 알고리듬을 이용한 동역학적 구조물의 최적설계)

  • Hwang, Sang-Moon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.116-124
    • /
    • 1999
  • In most conventional design optimization of dynamic system, design sensitivities are utilized. However, design sensitivities based optimization method has numbers of drawback. First, computing design sensitivities for dynamic system is mathematically difficult, and almost impossible for many complex problems as well. Second, local optimum is obtained. On the other hand, Genetic Algorithm is the search technique based on the performance of system, not on the design sensitivities. It is the search algorithm based on the mechanics of natural selection and natural genetics. GA search, differing from conventional search techniques, starts with an initial set of random solutions called a population. Each individual in the population is called a chromosome, representing a solution to the problem at hand. The chromosomes evolve through successive iterations, called generations. As the generation is repeated, the fitness values of chromosomes were maximized, and design parameters converge to the optimal. In this study, Genetic Algorithm is applied to the actual dynamic optimization problems, to determine the optimal design parameters of the dynamic system.

  • PDF

A initial cluster center selection in FCM algorithm using the Genetic Algorithms (유전 알고리즘을 이용한 FCM 알고리즘의 초기 군집 중심 선택)

  • 오종상;정순원;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.290-293
    • /
    • 1996
  • This paper proposes a scheme of initial cluster center selection in FCM algorithm using the genetic algorithms. The FCM algorithm often fails in the search for global optimum because it is local search techniques that search for the optimum by using hill-climbing procedures. To solve this problem, we search for a hypersphere encircling each clusters whose parameters are estimated by the genetic algorithms. Then instead of a randomized initialization for fuzzy partition matrix in FCM algorithm, we initialize each cluster center by the center of a searched hypersphere. Our experimental results show that the proposed initializing scheme has higher probabilities of finding the global or near global optimal solutions than the traditional FCM algorithm.

  • PDF

A Fast Motion Estimation Algorithm with Motion Analysis (움직임 해석을 통한 고속 움직임 예측 알고리즘)

  • Jun, Young-Hyun;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • We present an efficient block-based motion estimation algorithm with motion analysis. The motion analysis determines a size of search pattern and a maximum repeated count of search pattern. In case of large movement in large image, we reduce search points and the local minimum which caused by low performance. The proposed algorithm employs with searching step of 2. The first step determines an initial search point with neighbor block vector and a size of initial search pattern. The second step determines a size of search pattern and a maximum repeated count with motion analysis. We improve motion prediction accuracy while reducing required computational complexity compared to other fast block-based motion estimation algorithms.

  • PDF

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.