최근 증강현실 분야에서 특징점 인식 및 추적 기술은 비마커 기반의 증강 현실 서비스 구현에 중요한 역할을 담당하고 있다. 특징점 인식 및 추적 기술은 오래 전부터 컴퓨터 비전 등 여러 분야의 많은 연구자들에 의해 심도 있게 연구되어 왔으며, 특히 최근 급성장하고 있는 모바일 관련 시스템에 적용하기 위해 모바일 임베디드 환경에 접목 가능한 특징점 기반의 다양한 인식 및 추적 기술들이 소개되고 있다. 따라서 본 논문에서는 널리 활용되고 있는 특징점 기반의 매칭 및 추적의 다양한 핵심 요소 기술 (특징점 추출, 특징점 기술, 특징점 매칭 및 추적)에 대한 최신 동향을 분석하고, 본 한국과학기술연구원 연구팀이 수행한 모바일 증강현실 서비스 관련 사례 연구인 관광 지도 인식 및 추적 연구를 소개하고자 한다.
본 논문에서는 초미세 패턴으로 구성된 칩-온-필름(Chip-on-Film, COF) 패키징 작업에서 발생하는 결함들을 참조영상에 기초하여 효율적으로 검출하고 분류하는 시스템을 제안한다. COF패키징 제작 과정에서 발생하는 치명적인 결함은 개방(open), 일부개방(mouse bite, near open), 단락(hard short) 및 돌기(protrusion, near short, soft short) 등을 포함한다. 이러한 결함을 검출하기 위해서는 기존에 직접 육안으로 식별하거나 또는 전기회로 설계를 이용하는 방법을 사용하였다. 그러나 이러한 방법은 매우 많은 시간과 고비용이 요구되는 단점이 있다. 본 논문에서는 참조영상을 사용하여 효과적으로 결함유무를 판단하고 결함이 발생되는 경우에 결함의 종류를 4 가지 형태로 분류하는 시스템을 제안한다. 제안방식은 검사영상의 전처리, 관심영역 추출, 지역이진분석에 의한 이물 특징 분석과 분류 등을 포함한다. 수많은 실험을 통해, 제안된 시스템은 초미세 패턴을 가진 COF의 결함 검사 및 분류에 대해 기존의 방식에 비해 시간과 경비를 줄이는데 효과적임을 보인다.
최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경 에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.
자연 영상 내에 포함된 텍스트는 영상의 다양하고 중요한 특징을 갖는다. 그러므로 텍스트를 검출하고 추출하여 인식하는 것이 중요한 연구대상으로 연구되고 있다. 최근 모바일 폰 카메라를 기반으로 다양한 분야에서 많은 응용 기술이 연구 개발되고 있다. 본 논문은 에지 및 연결요소를 이용한 장면 텍스트 검출 방법을 제안한다. 그레이스케일 영상으로부터 에지 성분 검출과 지역적 표준편차를 이용하여 텍스트 영역의 경계선을 검출하고, RGB 컬러공간의 유클리디안 거리를 기준으로 연결요소를 검출한다. 검출된 에지 및 연결요소를 레이블링하고 각각 영역의 외곽사각형을 구한다. 텍스트의 휴리스틱 이용하여 후보 텍스트를 추출한다. 후보 텍스트 영역을 병합하여 하나의 후보 텍스트 영역을 생성하고, 후보 텍스트의 지역적 인접성과 구조적 유사성으로 후보 텍스트를 검증함으로서 최종적인 텍스트 영역을 검출하였다. 실험결과 에지 및 컬러 연결요소 특징을 상호 보완함으로서 텍스트 영역의 검출률을 향상시켰다.
본 논문은 3차원 얼굴 영상으로부터 등고선 영역을 추출하여 얼굴의 지역적 특징이 잘 반영되는 투영 벡터를 이용한 얼굴 인식 알고리즘을 제안한다. 얼굴의 외곽 형상은 사람에 따라 비슷한 모양을 나타내므로 구분하는데 어려움이 많다. 그러나 3차원 얼굴 영상은 깊이 정보를 갖고 있으므로, 코로부터 일정 깊이 값에 대한 영역을 추출하면 사람마다 다른 형상이 추출 될 수 있다. 얼굴 내에서 가장 높은 코를 먼저 추출한 후, 이를 기준으로 깊이 값을 취하면, 코를 포함한 얼굴 내의 등고선 영역을 추출하였다. 이 영역 또한 비슷한 형상을 나타낼 수 있으므로, 논문에서는 영상을 투영한 후 투영 벡터의 국부화를 통하여 영상의 지역적 특성이 잘 반영되는 통계적 성질의 투영 벡터 방법을 사용하여 특징 벡터를 추출하였다. 제안된 방법을 이용한 유사도 비교는 입력과 데이터 베이스에 대하여 각각 두개의 깊이 데이터에 대해 유클리드 거리를 사용하였으며, 실험 결과 5위 이내의 인식률이 94.3%로 나타났다.
홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 Zernike Moment를 이용해 홍채의 회전에 강인한 홍채 인식 방법을 제안하였다. 빠르고 효과적인 인식을 위한 Zernike Moment를 선택하기 위해 전역 최적 차수를 이용하였고, 각각의 홍채 클래스와 매칭하기 위하여 국소 최적 차수를 사용 하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.
International Journal of Computer Science & Network Security
/
제21권8호
/
pp.288-296
/
2021
Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.
중등도의 혈우병 A 환아와 중증의 혈우병 B 환아가 응고인자 투여 후 전신마취 하에 각각 매복 과잉치 발거술 및 다수 유치의 우식치료를 받았다. 이와 같이 혈우병 환자의 치과치료 시에는 부족한 응고인자를 보충해주는 등의 응고인자 수준의 관리와 복잡한 의과적 처치 및 술 후 관리가 요구된다. 또한 치과치료 시 출혈을 유발되지 않도록 주의해야 하며 응급 상황 등에 대비하여 국소적 지혈 방법 등을 숙지하고 있는 것이 필요하다.
주파수 및 시간영역 유도분극 탐사는 지하 매질의 분광 정보를 포함하고 있다. 분광 특성의 분석은 주로 주파수영역 유도분극 탐사에서 연구되어 왔으나, 근래에 시간영역 유도분극에서도 연구가 활발하게 이루어지고 있다. 이 연구에서는 반무한 균질 공간을 가정하고 측정된 2차 전위 및 전기비저항으로부터 Cole-Cole 변수를 추정하는 역산법을 개발하였다. 충전성, 완화시간 및 주파수 승수로 구성되는 Cole-Cole 변수들은 비독립적이기 때문에 통상적인 비선형 역산을 적용할 경우 느린 수렴속도, 적정 초기 모델 설정의 어려움, 지역 극소점, 발산 위험 등의 다양한 문제점이 발생한다. 이 연구에서는 격자 탐색법을 도입하여 참 모델에 근접한 초기 모델을 설정하는 효과적인 역산법을 개발하였다. 마지막으로 다양한 역산 실험을 통하여 개발된 역산법의 타당성을 검증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.2991-3007
/
2022
Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.