• 제목/요약/키워드: Local Extraction

검색결과 547건 처리시간 0.024초

모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구 (Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices)

  • 최희승;안상철;김익재
    • 한국HCI학회논문지
    • /
    • 제10권2호
    • /
    • pp.45-55
    • /
    • 2015
  • 최근 증강현실 분야에서 특징점 인식 및 추적 기술은 비마커 기반의 증강 현실 서비스 구현에 중요한 역할을 담당하고 있다. 특징점 인식 및 추적 기술은 오래 전부터 컴퓨터 비전 등 여러 분야의 많은 연구자들에 의해 심도 있게 연구되어 왔으며, 특히 최근 급성장하고 있는 모바일 관련 시스템에 적용하기 위해 모바일 임베디드 환경에 접목 가능한 특징점 기반의 다양한 인식 및 추적 기술들이 소개되고 있다. 따라서 본 논문에서는 널리 활용되고 있는 특징점 기반의 매칭 및 추적의 다양한 핵심 요소 기술 (특징점 추출, 특징점 기술, 특징점 매칭 및 추적)에 대한 최신 동향을 분석하고, 본 한국과학기술연구원 연구팀이 수행한 모바일 증강현실 서비스 관련 사례 연구인 관광 지도 인식 및 추적 연구를 소개하고자 한다.

참조영상 기반의 COF 결함 검출 및 분류 시스템 (COF Defect Detection and Classification System Based on Reference Image)

  • 김진수
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1899-1907
    • /
    • 2013
  • 본 논문에서는 초미세 패턴으로 구성된 칩-온-필름(Chip-on-Film, COF) 패키징 작업에서 발생하는 결함들을 참조영상에 기초하여 효율적으로 검출하고 분류하는 시스템을 제안한다. COF패키징 제작 과정에서 발생하는 치명적인 결함은 개방(open), 일부개방(mouse bite, near open), 단락(hard short) 및 돌기(protrusion, near short, soft short) 등을 포함한다. 이러한 결함을 검출하기 위해서는 기존에 직접 육안으로 식별하거나 또는 전기회로 설계를 이용하는 방법을 사용하였다. 그러나 이러한 방법은 매우 많은 시간과 고비용이 요구되는 단점이 있다. 본 논문에서는 참조영상을 사용하여 효과적으로 결함유무를 판단하고 결함이 발생되는 경우에 결함의 종류를 4 가지 형태로 분류하는 시스템을 제안한다. 제안방식은 검사영상의 전처리, 관심영역 추출, 지역이진분석에 의한 이물 특징 분석과 분류 등을 포함한다. 수많은 실험을 통해, 제안된 시스템은 초미세 패턴을 가진 COF의 결함 검사 및 분류에 대해 기존의 방식에 비해 시간과 경비를 줄이는데 효과적임을 보인다.

신, 구 차량 번호판 통합 인식에 관한 연구 (A Study on Recognition of Both of New & Old Types of Vehicle Plate)

  • 한건영;우영운;한수환
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1987-1996
    • /
    • 2009
  • 최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경 에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.

에지 및 컬러 양자화를 이용한 모바일 폰 카메라 기반장면 텍스트 검출 (Mobile Phone Camera Based Scene Text Detection Using Edge and Color Quantization)

  • 박종천;이근왕
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.847-852
    • /
    • 2010
  • 자연 영상 내에 포함된 텍스트는 영상의 다양하고 중요한 특징을 갖는다. 그러므로 텍스트를 검출하고 추출하여 인식하는 것이 중요한 연구대상으로 연구되고 있다. 최근 모바일 폰 카메라를 기반으로 다양한 분야에서 많은 응용 기술이 연구 개발되고 있다. 본 논문은 에지 및 연결요소를 이용한 장면 텍스트 검출 방법을 제안한다. 그레이스케일 영상으로부터 에지 성분 검출과 지역적 표준편차를 이용하여 텍스트 영역의 경계선을 검출하고, RGB 컬러공간의 유클리디안 거리를 기준으로 연결요소를 검출한다. 검출된 에지 및 연결요소를 레이블링하고 각각 영역의 외곽사각형을 구한다. 텍스트의 휴리스틱 이용하여 후보 텍스트를 추출한다. 후보 텍스트 영역을 병합하여 하나의 후보 텍스트 영역을 생성하고, 후보 텍스트의 지역적 인접성과 구조적 유사성으로 후보 텍스트를 검증함으로서 최종적인 텍스트 영역을 검출하였다. 실험결과 에지 및 컬러 연결요소 특징을 상호 보완함으로서 텍스트 영역의 검출률을 향상시켰다.

등고선 영역의 투영 벡터를 이용한 3차원 얼굴 인식 (3D Face Recognition using Projection Vectors for the Area in Contour Lines)

  • 이영학;심재창;이태홍
    • 한국멀티미디어학회논문지
    • /
    • 제6권2호
    • /
    • pp.230-239
    • /
    • 2003
  • 본 논문은 3차원 얼굴 영상으로부터 등고선 영역을 추출하여 얼굴의 지역적 특징이 잘 반영되는 투영 벡터를 이용한 얼굴 인식 알고리즘을 제안한다. 얼굴의 외곽 형상은 사람에 따라 비슷한 모양을 나타내므로 구분하는데 어려움이 많다. 그러나 3차원 얼굴 영상은 깊이 정보를 갖고 있으므로, 코로부터 일정 깊이 값에 대한 영역을 추출하면 사람마다 다른 형상이 추출 될 수 있다. 얼굴 내에서 가장 높은 코를 먼저 추출한 후, 이를 기준으로 깊이 값을 취하면, 코를 포함한 얼굴 내의 등고선 영역을 추출하였다. 이 영역 또한 비슷한 형상을 나타낼 수 있으므로, 논문에서는 영상을 투영한 후 투영 벡터의 국부화를 통하여 영상의 지역적 특성이 잘 반영되는 통계적 성질의 투영 벡터 방법을 사용하여 특징 벡터를 추출하였다. 제안된 방법을 이용한 유사도 비교는 입력과 데이터 베이스에 대하여 각각 두개의 깊이 데이터에 대해 유클리드 거리를 사용하였으며, 실험 결과 5위 이내의 인식률이 94.3%로 나타났다.

  • PDF

Zernike 모멘트 기반의 회전 불변 홍채 인식 (Rotation-Invariant Iris Recognition Method Based on Zernike Moments)

  • 최창수;서정만;전병민
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2012
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 Zernike Moment를 이용해 홍채의 회전에 강인한 홍채 인식 방법을 제안하였다. 빠르고 효과적인 인식을 위한 Zernike Moment를 선택하기 위해 전역 최적 차수를 이용하였고, 각각의 홍채 클래스와 매칭하기 위하여 국소 최적 차수를 사용 하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

혈우병A와 혈우병B 환자의 전신마취 하 치과치료 (DENTAL MANAGEMENT UNDER GENERAL ANESTHESIA OF CHILDREN WITH HEMOPHILIA A AND HEMOPHILIA B)

  • 김익환;박민지;이고은;이재호
    • 대한장애인치과학회지
    • /
    • 제14권2호
    • /
    • pp.102-105
    • /
    • 2018
  • 중등도의 혈우병 A 환아와 중증의 혈우병 B 환아가 응고인자 투여 후 전신마취 하에 각각 매복 과잉치 발거술 및 다수 유치의 우식치료를 받았다. 이와 같이 혈우병 환자의 치과치료 시에는 부족한 응고인자를 보충해주는 등의 응고인자 수준의 관리와 복잡한 의과적 처치 및 술 후 관리가 요구된다. 또한 치과치료 시 출혈을 유발되지 않도록 주의해야 하며 응급 상황 등에 대비하여 국소적 지혈 방법 등을 숙지하고 있는 것이 필요하다.

시간영역 유도분극 자료로부터 Cole-Cole 변수 산출 (Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data)

  • 김연정;조인기
    • 지구물리와물리탐사
    • /
    • 제24권4호
    • /
    • pp.164-170
    • /
    • 2021
  • 주파수 및 시간영역 유도분극 탐사는 지하 매질의 분광 정보를 포함하고 있다. 분광 특성의 분석은 주로 주파수영역 유도분극 탐사에서 연구되어 왔으나, 근래에 시간영역 유도분극에서도 연구가 활발하게 이루어지고 있다. 이 연구에서는 반무한 균질 공간을 가정하고 측정된 2차 전위 및 전기비저항으로부터 Cole-Cole 변수를 추정하는 역산법을 개발하였다. 충전성, 완화시간 및 주파수 승수로 구성되는 Cole-Cole 변수들은 비독립적이기 때문에 통상적인 비선형 역산을 적용할 경우 느린 수렴속도, 적정 초기 모델 설정의 어려움, 지역 극소점, 발산 위험 등의 다양한 문제점이 발생한다. 이 연구에서는 격자 탐색법을 도입하여 참 모델에 근접한 초기 모델을 설정하는 효과적인 역산법을 개발하였다. 마지막으로 다양한 역산 실험을 통하여 개발된 역산법의 타당성을 검증하였다.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.