• Title/Summary/Keyword: Local Binary Pattern, LBP

Search Result 76, Processing Time 0.024 seconds

A Study on Local Micro Pattern for Facial Expression Recognition (얼굴 표정 인식을 위한 지역 미세 패턴 기술에 관한 연구)

  • Jung, Woong Kyung;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This study proposed LDP (Local Directional Pattern) as a new local micro pattern for facial expression recognition to solve noise sensitive problem of LBP (Local Binary Pattern). The proposed method extracts 8-directional components using $m{\times}m$ mask to solve LBP's problem and choose biggest k components, each chosen component marked with 1 as a bit, otherwise 0. Finally, generates a pattern code with bit sequence as 8-directional components. The result shows better performance of rotation and noise adaptation. Also, a new local facial feature can be developed to present both PFF (permanent Facial Feature) and TFF (Transient Facial Feature) based on the proposed method.

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition

  • Yuan, Feiniu;Tang, Tiantian;Xia, Xue;Shi, Jinting;Li, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2078-2093
    • /
    • 2019
  • Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.

A Pattern Recognition Based on Co-occurrence among Median Local Binary Patterns (중간값 국소이진패턴 사이의 동시발생 빈도 기반 패턴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.316-320
    • /
    • 2016
  • In this paper, we presents a pattern recognition by considering the spatial co-occurrence among micro-patterns of texture images. The micro-patterns of texture image have been extracted by local binary pattern based on median(MLBP) of block image, and the recognition process is based on co-occurrence among MLBPs. The MLBP is applied not only to consider the local character but also analyze the pattern in order to be robust noise, and spatial co-occurrence is also applied to improve the recognition performance by considering the global space of image. The proposed method has been applied to recognized 17 RGB images of 120*120 pixels from Mayang texture image based on Euclidean distance. The experimental results show that the proposed method has a texture recognition performance.

Finger Vein Recognition Using Generalized Local Line Binary Pattern

  • Lu, Yu;Yoon, Sook;Xie, Shan Juan;Yang, Jucheng;Wang, Zhihui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1766-1784
    • /
    • 2014
  • Finger vein images contain rich oriented features. Local line binary pattern (LLBP) is a good oriented feature representation method extended from local binary pattern (LBP), but it is limited in that it can only extract horizontal and vertical line patterns, so effective information in an image may not be exploited and fully utilized. In this paper, an orientation-selectable LLBP method, called generalized local line binary pattern (GLLBP), is proposed for finger vein recognition. GLLBP extends LLBP for line pattern extraction into any orientation. To effectually improve the matching accuracy, the soft power metric is employed to calculate the matching score. Furthermore, to fully utilize the oriented features in an image, the matching scores from the line patterns with the best discriminative ability are fused using the Hamacher rule to achieve the final matching score for the last recognition. Experimental results on our database, MMCBNU_6000, show that the proposed method performs much better than state-of-the-art algorithms that use the oriented features and local features, such as LBP, LLBP, Gabor filter, steerable filter and local direction code (LDC).

An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights (블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.73-79
    • /
    • 2009
  • In this paper, a method is proposed that enhances the performance of the facial expression recognition using template matching of Local Binary Pattern(LBP) histogram. In this method, the face image is segmented into blocks, and the LBP histogram is constructed to be used as the feature of the block. Block dissimilarity is calculated between a block of input image and the corresponding block of the model image. Image dissimilarity is defined as the weighted sum of the block dissimilarities. In conventional methods, the block weights are assigned by intuition. In this paper a new method is proposed that optimizes the weights from training samples. An experiment shows the recognition rate is enhanced by the proposed method.

A Texture Classification Based on LBP by Using Intensity Differences between Pixels (화소간의 명암차를 이용한 LBP 기반 질감분류)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.483-488
    • /
    • 2015
  • This paper presents a local binary pattern(LBP) for effectively classifying textures, which is based on the multidimensional intensity difference between the adjacent pixels in the block image. The intensity difference by considering the a extent of 4 directional changes(verticality, horizontality, diagonality, inverse diagonality) in brightness between the adjacent pixels is applied to reduce the computation load as a results of decreasing the levels of histogram for classifying textures of image. And the binary patterns that is represented by the relevant intensities within a block image, is also used to effectively classify the textures by accurately reflecting the local attributes. The proposed method has been applied to classify 24 block images from USC Texture Mosaic #2 of 128*128 pixels gray image. The block images are different in size and texture. The experimental results show that the proposed method has a speedy classification and makes a free size block images classify possible. In particular, the proposed method gives better results than the conventional LBP by increasing the range of histogram level reduction as the block size becomes larger.

An Improved Secure Semi-fragile Watermarking Based on LBP and Arnold Transform

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1382-1396
    • /
    • 2017
  • In this paper, we analyze a recently proposed semi-fragile watermarking scheme based on local binary pattern (LBP) operators, and note that it has a fundamental flaw in the design. In this work, a binary watermark is embedded into image blocks by modifying the neighborhood pixels according to the LBP pattern. However, different image blocks might have the same LBP pattern, which can lead to false detection in watermark extraction process. In other words, one can modify the host image intentionally without affecting its watermark message. In addition, there is no encryption process before watermark embedding, which brings another potential security problem. To illustrate its weakness, two special copy-paste attacks are proposed in this paper, and several experiments are conducted to prove the effectiveness of these attacks. To solve these problems, an improved semi-fragile watermarking based on LBP operators is presented. In watermark embedding process, the central pixel value of each block is taken into account and Arnold transform is adopted to guarantee the security of watermark. Experimental results show that the improved watermarking scheme can overcome the above defects and locate the tampered region effectively.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF