• Title/Summary/Keyword: Loading point

Search Result 1,127, Processing Time 0.027 seconds

Flexural Fatigue Bechavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨 피로거동에 관한 연구)

  • 장동일;채원규;손영현
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC(steel fiber reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. The three point loading system is used in the fatigue tests. In tl1ese tests, relations between the repeated loading cycles and the mid-span deflections, number of repeated loadmg cycles when specimen was fractured were observed. On this basis, the mid-span deflections, the elastic strain energy and inelastic strain energy of SFRC were studied. A S - N curve \vas drawn to present the fatigue strength of SFRC beam. From che test results, by increasing the steel fiber content the energy lost on the permanent deformation decreases and the energy spent on crack growth increases. But in case of SFRC with the same steel fiber content the higher the steel fiber aspect ratio is, the less the elastic strain energy is. According to S - N curve drawn by the regression analysis on the fatugue test results, the fatigue strength with 2,000,000 repeated loading cycles in SFRC with the steel fiber content is 1.0% shows about 70% on the first crack static flexural strength.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE (임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석)

  • Chung Kyung-Min;Chung Chae-Heon;Jeong Seung-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

Characteristics of Physical Properties of Rocks and Their Mutual Relations (암석의 종류와 방향에 따른 물리적 특성과 상호관계)

  • 원연호;강추원;김종인;박현식
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.

Delivered Pollutant Loads of Point and Nonpoint Source on the Upper Watershed of Lake Paldang - Case Study of the Watershed of Namhan River and Gyeongan Stream (팔당호 상류유역의 점·비점오염원 유달부하 특성 - 남한강·경안천 수계를 대상으로)

  • Park, Ji Hyoung;Kong, Dong Soo;Min, Kyung Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.750-757
    • /
    • 2008
  • This study is conducted to characterize and evaluate delivered pollutant loads of point and nonpoint source on the upper watershed of lake paldang. The study area consists of 12 watersheds in Namhan-river and Kyungahcheon, which are approximately 80% of total area of Namhan-river and Kyungahcheon. Based on daily delivered loads from watersheds, 61% of $BOD_5$, 81% of T-N and 70% of T-P were from nonpoint sources, suggesting that delivered loads of nonpoint pollutants be crucial to water quality. On the other hand, 78% of $BOD_5$, 92% of T-N and 87% of T-P as delivered load were from nonpoint sources in an upper watershed of Namhan-river, while 48% of $BOD_5$, 70% of T-N and 57% of T-P as delivered load were from nonpoint sources in a lower watershed of Namhan-river, suggesting higher dependency of point sources than upper watershed of Namhan-river. In the characteristic of delivered loading pollutants from point and nonpoint pollution sources, delivered load of nonpoint pollutants differed significantly by seasonal flow, and as though discharged load of point pollutants were yearly uniform, delivered load of point pollutants was found to be flow-dependent because its delivery ratio was changed.

Shear Strength Model of Reinforced Concrete Columns (철근콘크리트 기둥의 전단강도 모델)

  • 하태훈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.430-437
    • /
    • 1998
  • The existing design expressions for shear strength of reinforced concrete columns are lacking in consistent seismic design philosophy and very conservative. However, relatively not so many experiments have been conducted to verify the shear resisting mechanisms of columns. The previous researches concentrated on deriving an experimental model from their test results. So, there is a need to approach this problem from the analytical point of view to be balanced with the experimental effort. This paper presents a method of modeling reinforced concrete columns under seismic shear loading. Lower bound solutions are obtained by using an analogous truss model and concrete arch actions. This model agrees with the precedented test results by some margins.

  • PDF

Am Experimental Study on the Flexural Behavior after Crack Initiation of PSC I-Girder (PSC-I 거더의 균열 발생 이후의 휨거동에 관한 실험적 연구)

  • 심종성;오홍섭;김민수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.541-544
    • /
    • 1999
  • The main objective of this study is to develope the PSC-I girder for long span bridge. This study investigates the structural behavior of Postcracking stage and efficiency of proposed PSC-I girder using 1/2 scaled prototype beam specimen. Three specimens are tested under three point static loading system. Ideally, the Load-displacement relationship is trilinear. The crack patterns and failure mode of each specimen are reported in this paper and they are compared to each other with ductility and strength.

  • PDF

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 On-Line Monitoring)

  • 이준현;이진경;장일영;윤동진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.677-682
    • /
    • 1998
  • Concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix. In this study, an acoustic emission technique has been used to clarify the microscope failure mechanisms of concrete under three point bending test. AE source location has also been done to monitor the activities of internal damage and the progress of microscopic failure path during the loading. The relationship between AE characteristic and microscopic and microscopic failure mechanism is discussed.

  • PDF

Shear Behavior of Reinforced Concrete Beams Subjected to Uniform Load (등분포하중을 받는 철근콘크리트보의 전단거동에 관한 연구)

  • Kim, Dae-Jung;Kim, U
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.60-64
    • /
    • 1991
  • The shear behavior of reinforced concrete beams subjected to uniform loading was investigated by testing 1/3 small-scale model R/C beams. The emphasis was placed in finding a fundamental difference in behavior between in uniformly loaded beams and in point loaded beams. The major variable was the span-to-depth ratio, varying from 4 to 12. The concrete strength and steel ratio were fixed.

  • PDF

A Comparative Study on Flexural Toughness of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨파괴 인성지수의 결정에 관한 비교 연구)

  • 구봉근;정경섭;김태봉;박종인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.69-74
    • /
    • 1991
  • This paper reviewed various methods of evaluating the toughness of fiber reinforced concrete materials by means of toughness indices and discussed the use of various multiples of first-crack deflection or first-crack secant compliance to define toughness indices. And a new method what is called effective toughness used to evaluate the toughness of steel fiber reinforced concrete. The proposed method determinded from the area below the load-deflection curve until deflection at the loading point becoms 1/150 of the span devided by the ligament area.

  • PDF

The Stress Field in a Body Caused by the Tangential Force of a Rectangular Patch on a Semi-Infinite Solid

  • Cho, Yong-Joo;Kim, Tae-Wan;Lee, Mun-Ju
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • The stress field in a body caused by the tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using a potential function. The validity of the results of this study was preyed by Saint-Venant's principle in the remote region and by the superposition of point loads in the vicinity of the surface.

  • PDF