• Title/Summary/Keyword: Loading Size

Search Result 1,215, Processing Time 0.029 seconds

Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis

  • Polly Lama;Jerina Tiwari;Pulkit Mutreja;Sukirti Chauhan;Ian J Harding;Trish Dolan;Michael A Adams;Christine Le Maitre
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.382-393
    • /
    • 2023
  • Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.

Nasal Immunization Using Chitosan Nanoparticles with Glycoprotein B of Murine Cytomegalovirus

  • Marcela Slovakova;Sylva Janovska;Radek Sleha;Vera Radochova;Alexandra Hatala;Nikola Mannova;Radovan Metelka;Ludovit Pudelka;Pavel Bostik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.663-672
    • /
    • 2024
  • The use of nanoparticles as a delivery system for a specific antigen could solve many limitations of mucosal vaccine applications, such as low immunogenicity, or antigen protection and stabilization. In this study, we tested the ability of nasally administered chitosan nanoparticles loaded with glycoprotein B of murine cytomegalovirus to induce an immune response in an animal model. The choice of chitosan nanoparticle type was made by in vitro evaluation of sorption efficiency and antigen release. Three types of chitosan nanoparticles were prepared: crosslinked with tripolyphosphate, coated with hyaluronic acid, and in complex with polycaprolactone. The hydrodynamic size of the nanoparticles by dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, scanning electron microscopy, stability, loading efficiency, and release kinetics with ovalbumin were evaluated. Balb/c mice were immunized intranasally using the three-dose protocol with nanoparticles, gB, and adjuvants Poly(I:C) and CpG ODN. Subsequently, the humoral and cell-mediated antigen-specific immune response was determined. On the basis of the properties of the tested nanoparticles, the cross-linked nanoparticles were considered optimal for further investigation. The results show that nanoparticles with Poly(I:C) and with gB alone raised IgG antibody levels above the negative control. In the case of mucosal IgA, only gB alone weakly induced the production of IgA antibodies compared to saline-immunized mice. The number of activated cells increased slightly in mice immunized with nanoparticles and gB compared to those immunized with gB alone or to negative control. The results demonstrated that chitosan nanoparticles could have potential in the development of mucosal vaccines.

A Study on Approximate Analysis of Steel Deck Bridges with Guss Asphalt Using Influence Line (영향선을 이용한 강상판 교량의 구스 아스팔트 포장에 대한 근사해석 연구)

  • Seo, Ki-Hong;Ka, Hoon;Kong, Min-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.127-135
    • /
    • 2006
  • In this study, steel deck bridges are chosen as analytic model to show the structural behaviors generated by high temperature of pavement and to formulate the simplified approximate analysis of thermal effects. In general, the thermal effect is changed by the material property of pavements and environmental temperature as well as shape, size and boundary conditions of bridge. Specially, this effect is the representative initial stress problem dependent on time. The thermal effect, however, does not depend on time and thermal effect is regarded as initial load in this study. After these thermal loading is modelled as moving loads, influence lines of reactions of shoes are calculated and the successive pavement steps with arbitrary segments are determined to minimize the thermal effect of shoes by influence line.

Specimen Size Effect in Estimation of Rut Resistance based on Deformation Strength (공시체 크기가 변형강도를 이용한 소성변형 추정에 미치는 영향)

  • Lee, Moon-Sup;Choi, Sun-Ju;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.1-13
    • /
    • 2004
  • This study dealt with size effect of specimen in measuring deformation strength and estimating rut resistance of asphalt concretes under static loading using Kim test. Two aggregates, a normal asphalt (pen 60-80) and 6 polymer-modified asphalt (PMA) binders were used for preparation of 14 dense-graded mixtures. Mixtures were prepared based on optimum asphalt content by Marshall compactor (S= 10cm) and gyratory compactor (S= 15cm) for Kim test and for wheel tracking test. In statistical analysis by general linear model (GLM) procedure of SAS, the diameter of specimen was found not to be a significant factor that affect the Kim test result. Therefore, it was found that either loom-diameter or 15cm-diameter of specimen gave no significant difference in deformation strength ($K_D$) values in Kim test for any aggregate mixture. However, the thickness of specimen was found to be a significant factor in determining $K_D$. It is estimated that $K_D$ is a function of y, vertical deformation, and y has something to do with thickness of specimen. Therefore, it is suggested that the thickness of specimen should not be higher than 6.6cm, and the correction factor depending on the thickness value should be developed in the future study.

  • PDF

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

A Study on the Relation Characteristics between Bubble Size Distribution and Floating Time (버블의 크기별 입도분포와 부상시간과의 상관특성에 관한 연구)

  • Jeon, Gun;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.277-281
    • /
    • 2017
  • Lately rainfall characteristics that it rains a lot in a short space of time often occurs. Because of this meteorological phenomena, the flow rate and concentration of initial rainfall for runoff and combined sewer overflows are changed. In the case of this inlet fluctuation, the flotation method at high surface loading rate is suitable for water quality management. the flotation method is able to meet the removal rate requirements of water public zone in 5 to 10 min which is irelatively short period. For assessment and diagonision of flotation method, A/S ratio is applied until now. But unfortunately, this has some limits for evaluation standard for certification and assessment of technical diagnosis and operation. This is why there is different efficiency in the bubble distribution at the same A/S ratio. The velocity and time of floating is changed by the different bubble distributions. The floating time affects the plant volume because the time factor make size dicision. Therefore the charateristics of bubble distribution and floating time at the same A/S ratio is necessary to apply to evaluation standard for certification and assessment of technical diagnosis and operation. For generalization of the method in certification and assessment, the characteristics of bubble distribution was studied. Until recently, using the optical device and shooting live video, there are some analysis technology of the floating factors. But this kind of technology is influenced by the equipment. with this level of confidence about the results, it is difficult to apply to generalize. According this reasons, this study should be applied on experiment generalization of method about measurement of relation between bubble distribution and floating time.

Performance Evaluation of Vortex Screen for Treatment of Fine Particles in Storm Runoff (Vortex Screen장치를 이용한 강우유출수내 미세입자 처리특성 분석)

  • Lee, Jun-Ho;Jung, Yun-Hee;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.256-262
    • /
    • 2009
  • The use of hydrodynamic separator is becoming increasingly popular for suspended solids reduction in urban storm runoff. This study is a laboratory investigation of the use of Vortex Screen to reduce the solids concentration of synthesized storm runoff. The synthesized storm runoff was made with water and addition of particles; manhole sediment, road sediment, fly ash, and ployvinyl chloride powder. Vortex Screen was made of acryl resin with 250 mm of diameter and height of 700 mm. To determine the removal efficiency for various influent concentrations of suspended solids (SS) and chemical oxygen demand (COD), tests were performed with different operational conditions. The samples were taken simultaneously at the influent storage tank and effluent tank, and measured SS and COD concentrations. The ranges of surface loading rate were 110 to 1,550 $m^3/m^2$/day, and influent SS concentrations were varied from 141 to 1,986 mg/L. This paper was intended to evaluate the effect of inlet baffle and the ratio of underflow to overflow ($Q_U/Q_O$) on particle separation efficiency for various particle size using Vortex Screen. It was found that when increase of $Q_U/Q_O$ from 10% to 20%, SS removal efficiency was increased about 6%. The range of SS and COD removal efficiencies of road sediment particle size 125<$d_p$<300 ${\mu}m$ were 68.0~81.0%, 53.1~71.9%, respectively. Results showed that SS removal efficiency with inlet baffle improved by about 10~20% compared without inlet baffle.

Analysis of Feature Importance of Ship's Berthing Velocity Using Classification Algorithms of Machine Learning (머신러닝 분류 알고리즘을 활용한 선박 접안속도 영향요소의 중요도 분석)

  • Lee, Hyeong-Tak;Lee, Sang-Won;Cho, Jang-Won;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.139-148
    • /
    • 2020
  • The most important factor affecting the berthing energy generated when a ship berths is the berthing velocity. Thus, an accident may occur if the berthing velocity is extremely high. Several ship features influence the determination of the berthing velocity. However, previous studies have mostly focused on the size of the vessel. Therefore, the aim of this study is to analyze various features that influence berthing velocity and determine their respective importance. The data used in the analysis was based on the berthing velocity of a ship on a jetty in Korea. Using the collected data, machine learning classification algorithms were compared and analyzed, such as decision tree, random forest, logistic regression, and perceptron. As an algorithm evaluation method, indexes according to the confusion matrix were used. Consequently, perceptron demonstrated the best performance, and the feature importance was in the following order: DWT, jetty number, and state. Hence, when berthing a ship, the berthing velocity should be determined in consideration of various features, such as the size of the ship, position of the jetty, and loading condition of the cargo.

Modified S-FPZ Model for a Running Crack in Concrete (콘크리트의 연속적인 균열성장에 대한 수정 특이-파괴진행대 이론)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.802-810
    • /
    • 2003
  • In this paper, the modified singular fracture process zone (S-FPZ) model is proposed to consider variation of a fracture criterion for continuous crack propagation in concrete. The fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and crack closure stress (CCS) versus crack opening displacement (COD) relationship in the FPZ. The proposed model can simulate the estimated fracture energy of experimental results. The analysis results of the experimental data shows that specimen geometry and loading condition did not affect the CCS-COD relation. But the strain energy release rate is a function of not only specimen geometry but also crack extension. Until 25 mm crack extension, the strain energy release rate is a constant minimum value, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for an large size specimen. The fracture criterion remains the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localizing. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-tracking and micro-crack localizing behaviors of concrete.

Surface Modification of Liposomes Using Comblike Copolymer for Enhancing Stability in Blood Circulation (혈류 내 안정성 향상을 위한 빗 모양 고분자로 개질된 리포솜)

  • Sin, Byeong-Cheol;Song, Chung-Gil;Hwang, Tae-Won;Seong, Ha-Su;Park, Eun-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • To increase the stability of liposomes in blood circulation, surface modification of liposomes by incorporating a lipid-polymer derivative in the lipid bilayer or conjugating a hydrophilic polymer to the liposomal surface has been developed. In this study, the comblike copolymer, poly(HEMA-co-HPOEM), having multiple polyethyleneoxide side chains was prepared by free radical polymerization of hydroxyethylmethacrylate (HEMA) and hydroxypolyoxyethylenemethacrylate (HPOEM) as vinyl monomers. Poly(HEMA-co-HPOEM) was conjugated to the liposomal surface and the characteristics of the modified liposomes in serum were investigated. Conjugation of poly(HEMA-co-HPOEM) to liposomes increased the particle size of the liposomes by 30 nm and decreased the absolute value of zeta potential of the liposomes by shielding the negative charge of liposomal surface. Loading efficiency of model drug, doxorubicin, in liposomes was about 90% and the efficiency was not affected by conjugation of poly(HEMA-co-HPOEM) to liposomes. The particle size of poly(HEMA-co-HPOEM)-conjugated liposomes in serum did not changed and the protein adsorption was lower than that of control liposomes or liposomes containing polyethyleneoxide-lipid derivative (PEG-liposomes). These results suggest that poly(HEMA-co-HPOEM) is efficient for the stabilization of liposomes in blood circulation.