DOI QR코드

DOI QR Code

Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis

  • Polly Lama (Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University) ;
  • Jerina Tiwari (Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University) ;
  • Pulkit Mutreja (Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University) ;
  • Sukirti Chauhan (Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University) ;
  • Ian J Harding (Centre for Clinical Anatomy, University of Bristol) ;
  • Trish Dolan (Centre for Clinical Anatomy, University of Bristol) ;
  • Michael A Adams (Centre for Clinical Anatomy, University of Bristol) ;
  • Christine Le Maitre (Biomolecular Research Centre, Sheffield Hallam University)
  • Received : 2023.03.08
  • Accepted : 2023.05.22
  • Published : 2023.09.30

Abstract

Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.

Keywords

Acknowledgement

Research Grants from Indian Council of Medical Research (No. ICMR/5/7/1290-2015 RCH), Dr TMA Pai Grant (No. SMU/131/REG/TMAPURK/164/2020) for Polly Lama and Action Medical Research Grant (No. MS0549089/2016) for Trish Dolan and Michael A Adams.

References

  1. Karppinen J, Shen FH, Luk KD, Andersson GB, Cheung KM, Samartzis D. Management of degenerative disk disease and chronic low back pain. Orthop Clin North Am 2011;42:513-28, viii.  https://doi.org/10.1016/j.ocl.2011.07.009
  2. Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD. Biomechanics of the human intervertebral disc: a review of testing techniques and results. J Mech Behav Biomed Mater 2017;69:420-34.  https://doi.org/10.1016/j.jmbbm.2017.01.037
  3. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P. Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 2000;25:1625-36.  https://doi.org/10.1097/00007632-200007010-00005
  4. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 2006;31:2151-61.  https://doi.org/10.1097/01.brs.0000231761.73859.2c
  5. Adams A, Roche O, Mazumder A, Davagnanam I, Mankad K. Imaging of degenerative lumbar intervertebral discs; linking anatomy, pathology and imaging. Postgrad Med J 2014;90:511-9.  https://doi.org/10.1136/postgradmedj-2013-132193
  6. Adams MA, Dolan P. Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat 2012;221:497-506.  https://doi.org/10.1111/j.1469-7580.2012.01551.x
  7. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 1989;14:166-74.  https://doi.org/10.1097/00007632-198902000-00005
  8. Lama P, Le Maitre CL, Dolan P, Tarlton JF, Harding IJ, Adams MA. Do intervertebral discs degenerate before they herniate, or after? Bone Joint J 2013;95-B:1127-33.  https://doi.org/10.1302/0301-620X.95B8.31660
  9. Johnson WE, Eisenstein SM, Roberts S. Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 2001;42:197-207.  https://doi.org/10.3109/03008200109005650
  10. Lyu FJ, Cheung KM, Zheng Z, Wang H, Sakai D, Leung VY. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol 2019;15:102-12.  https://doi.org/10.1038/s41584-018-0154-x
  11. Lama P, Claireaux H, Flower L, Harding IJ, Dolan T, Le Maitre CL, Adams MA. Physical disruption of intervertebral disc promotes cell clustering and a degenerative phenotype. Cell Death Discov 2019;5:154. 
  12. Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 2005;7:R732-45.  https://doi.org/10.1186/ar1732
  13. Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 2007;9:R45. 
  14. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP. Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine (Phila Pa 1976) 2002;27:1018-28.  https://doi.org/10.1097/00007632-200205150-00004
  15. Trout JJ, Buckwalter JA, Moore KC. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 1982;204:307-14.  https://doi.org/10.1002/ar.1092040403
  16. Sharp CA, Roberts S, Evans H, Brown SJ. Disc cell clusters in pathological human intervertebral discs are associated with increased stress protein immunostaining. Eur Spine J 2009;18:1587-94.  https://doi.org/10.1007/s00586-009-1053-2
  17. Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS. The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine (Phila Pa 1976) 2003;28:982-90.  https://doi.org/10.1097/01.BRS.0000061986.03886.4F
  18. Kim JH, Deasy BM, Seo HY, Studer RK, Vo NV, Georgescu HI, Sowa GA, Kang JD. Differentiation of intervertebral notochordal cells through live automated cell imaging system in vitro. Spine (Phila Pa 1976) 2009;34:2486-93.  https://doi.org/10.1097/BRS.0b013e3181b26ed1
  19. Phillips KL, Chiverton N, Michael AL, Cole AA, Breakwell LM, Haddock G, Bunning RA, Cross AK, Le Maitre CL. The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc. Arthritis Res Ther 2013;15:R213. 
  20. Ashton IK, Eisenstein SM. The effect of substance P on proliferation and proteoglycan deposition of cells derived from rabbit intervertebral disc. Spine (Phila Pa 1976) 1996;21:421-6.  https://doi.org/10.1097/00007632-199602150-00004
  21. Henriksson HB, Svala E, Skioldebrand E, Lindahl A, Brisby H. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976) 2012;37:722-32.  https://doi.org/10.1097/BRS.0b013e318231c2f7
  22. Gardner DL. Problems and paradigms in joint pathology. J Anat 1994;184(Pt 3):465-76. 
  23. Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D'Lima D. Cartilage cell clusters. Arthritis Rheum 2010;62:2206-18.  https://doi.org/10.1002/art.27528
  24. Bryant PJ. Growth factors controlling imaginal disc growth in Drosophila. Novartis Found Symp 2001;237:182-94; discussion 194-202.  https://doi.org/10.1002/0470846666.ch14
  25. Li FX, Xu F, Lin X, Wu F, Zhong JY, Wang Y, Guo B, Zheng MH, Shan SK, Yuan LQ. The role of substance P in the regulation of bone and cartilage metabolic activity. Front Endocrinol (Lausanne) 2020;11:77. 
  26. Opolka A, Straub RH, Pasoldt A, Grifka J, Grassel S. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum 2012;64:729-39.  https://doi.org/10.1002/art.33449
  27. Ogunlade B, Fidelis OP, Adelakun SA, Adedotun OA. Grape seed extract inhibits nucleus pulposus cell apoptosis and attenuates annular puncture induced intervertebral disc degeneration in rabbit model. Anat Cell Biol 2020;53:313-24.  https://doi.org/10.5115/acb.20.047
  28. Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 2001;26:2543-9.  https://doi.org/10.1097/00007632-200112010-00006
  29. Mavrogonatou E, Papadimitriou K, Urban JP, Papadopoulos V, Kletsas D. Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells. J Cell Physiol 2015;230:3037-48.  https://doi.org/10.1002/jcp.25040
  30. Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, Alini M, Risbud MV, Chan D, Cheah KS, Yamamura K, Masuda K, Okano H, Ando K, Mochida J. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2012;3:1264. 
  31. Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2021;250:302-17.  https://doi.org/10.1002/dvdy.217
  32. Mizrahi O, Sheyn D, Tawackoli W, Ben-David S, Su S, Li N, Oh A, Bae H, Gazit D, Gazit Z. Nucleus pulposus degeneration alters properties of resident progenitor cells. Spine J 2013;13:803-14.  https://doi.org/10.1016/j.spinee.2013.02.065
  33. Sakai D, Schol J, Bach FC, Tekari A, Sagawa N, Nakamura Y, Chan SCW, Nakai T, Creemers LB, Frauchiger DA, May RD, Grad S, Watanabe M, Tryfonidou MA, Gantenbein B. Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species. JOR Spine 2018;1:e1018. 
  34. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.  https://doi.org/10.1097/00007632-200109010-00011
  35. Schmitz N, Laverty S, Kraus VB, Aigner T. Basic methods in histopathology of joint tissues. Osteoarthritis Cartilage 2010;18 Suppl 3:S113-6.  https://doi.org/10.1016/j.joca.2010.05.026
  36. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976) 2002;27:2631-44.  https://doi.org/10.1097/00007632-200212010-00002
  37. Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 2001;49:1565-72.  https://doi.org/10.1177/002215540104901210
  38. Bouayad D, Pederzoli-Ribeil M, Mocek J, Candalh C, Arlet JB, Hermine O, Reuter N, Davezac N, Witko-Sarsat V. Nuclearto-cytoplasmic relocalization of the proliferating cell nuclear antigen (PCNA) during differentiation involves a chromosome region maintenance 1 (CRM1)-dependent export and is a prerequisite for PCNA antiapoptotic activity in mature neutrophils. J Biol Chem 2012;287:33812-25.  https://doi.org/10.1074/jbc.M112.367839
  39. Faratian D, Munro A, Twelves C, Bartlett JM. Membranous and cytoplasmic staining of Ki67 is associated with HER2 and ER status in invasive breast carcinoma. Histopathology 2009;54:254-7.  https://doi.org/10.1111/j.1365-2559.2008.03191.x
  40. Cserni G. Analysis of membranous Ki-67 staining in breast cancer and surrounding breast epithelium. Virchows Arch 2018;473:145-53.  https://doi.org/10.1007/s00428-018-2343-z
  41. Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021;11:210120. 
  42. Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 2004;204:47-54.  https://doi.org/10.1002/path.1608
  43. Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, Spencer SL. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep 2018;24:1105-12.e5.  https://doi.org/10.1016/j.celrep.2018.06.110
  44. Sasaki K, Kurose A, Ishida Y. Flow cytometric analysis of the expression of PCNA during the cell cycle in HeLa cells and effects of the inhibition of DNA synthesis on it. Cytometry 1993;14:876-82.  https://doi.org/10.1002/cyto.990140805
  45. Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol 2015;44-46:224-31.  https://doi.org/10.1016/j.matbio.2015.01.005
  46. Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 2013;13:331-41.  https://doi.org/10.1016/j.spinee.2012.02.027
  47. Tschoeke SK, Hellmuth M, Hostmann A, Robinson Y, Ertel W, Oberholzer A, Heyde CE. Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res 2008;26:999-1006.  https://doi.org/10.1002/jor.20601
  48. Jiang LB, Liu HX, Zhou YL, Sheng SR, Xu HZ, Xue EX. An ultrastructural study of chondroptosis: programmed cell death in degenerative intervertebral discs in vivo. J Anat 2017;231:129-39.  https://doi.org/10.1111/joa.12618
  49. Lama P, Kulkarni JP, Tamang BK. The role of cell clusters in intervertebral disc degeneration and its relevance behind repair. Spine Res 2017;3:15. 
  50. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001;3:107-13.  https://doi.org/10.1186/ar148
  51. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med 2005;24:1-12.  https://doi.org/10.1016/j.csm.2004.08.007
  52. Melrose J, Roberts S, Smith S, Menage J, Ghosh P. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976) 2002;27:1278-85.  https://doi.org/10.1097/00007632-200206150-00007
  53. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995;20:1307-14.  https://doi.org/10.1097/00007632-199506000-00022
  54. Urban JP, Maroudas A. Swelling of the intervertebral disc in vitro. Connect Tissue Res 1981;9:1-10.  https://doi.org/10.3109/03008208109160234
  55. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 2004;29:2700-9.  https://doi.org/10.1097/01.brs.0000146499.97948.52
  56. Zhao CQ, Wang LM, Jiang LS, Dai LY. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 2007;6:247-61.  https://doi.org/10.1016/j.arr.2007.08.001
  57. Lotz JC, Chin JR. Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976) 2000;25:1477-83.  https://doi.org/10.1097/00007632-200006150-00005
  58. Le Maitre CL, Frain J, Millward-Sadler J, Fotheringham AP, Freemont AJ, Hoyland JA. Altered integrin mechanotransduction in human nucleus pulposus cells derived from degenerated discs. Arthritis Rheum 2009;60:460-9.  https://doi.org/10.1002/art.24248
  59. Wuertz K, Vo N, Kletsas D, Boos N. Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases. Eur Cell Mater 2012;23:103-19; discussion 119-20.  https://doi.org/10.22203/eCM.v023a08
  60. Vogl T, Eisenblatter M, Voller T, Zenker S, Hermann S, van Lent P, Faust A, Geyer C, Petersen B, Roebrock K, Schafers M, Bremer C, Roth J. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. Nat Commun 2014;5:4593. 
  61. Haglund L, Bernier SM, Onnerfjord P, Recklies AD. Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biol 2008;27:107-18. https://doi.org/10.1016/j.matbio.2007.09.009