• 제목/요약/키워드: Load-pull

검색결과 271건 처리시간 0.033초

농업토목 수리구조물 안전도평가 시스템 개발에 관한 연구 (Development of Safety Assessment System for Agricultural Irrigation Structures)

  • 조효남;김성훈;최영민;이승재
    • 전산구조공학
    • /
    • 제6권1호
    • /
    • pp.107-115
    • /
    • 1993
  • 본 연구는 개인용 컴퓨터를 이용하여 농업토목 수리구조물의 안전도평가시스템을 개발하는데 목적이 있다. 본 시스템은 상호 유기적인 관계를 가지고 있는 데이타베이스, 구조해석, 안전도분석/평가, 입출력도식화의 4가지 서브시스템으로 구성되었으며, 사용자 위주의 풀다운식 메뉴드라이빙 형태로 개발되었다. 노후손상된 구조물의 안전도평가에 사용된 주요 알고리즘은 신뢰성이론에 의한 합리적 내하력 평가방법에 기초하였다. 본 연구에서 개발된 안전도평가 시스템은 노후손상된 농업토목 수리구조물의 안전도 및 내하력 평가를 위한 효율적인 수단으로서 실무에서 널리 사용될 수 있을 것이라고 사료된다.

  • PDF

PDP용 수직형 구조의 근접 노광장치 개발 (Development of Proximity Exposure System with Vertical Structure for Plasama Display Panel)

  • 박정규;정수화;이항부
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2371-2380
    • /
    • 2000
  • In this paper, we developed the proximity exposure system with the vertical structure of glass and mask stage to minimize the mask's warp caused by the pull of gravity. This system, which canirradiate the ultra violet through 1440 H 850 $\textrm{mm}^2$ and 1330X 1015 $\textrm{mm}^2$ exposure area, has the followingcharacteristics. The glass stage can be inclined by 80 degrees at vertical structure to load substrate withsafety on it. When the glass stage is the vertical state, the gap control, alignment control and exposureof ultra violet are executed. So, it enhances the pattern uniformity by minimizing the mask's warp. Theglass stage can also control the gap between the mask and the substrate by the coarse and fine motioncontrol. The mask stage can adjust the posture of photomask to the position of substrate by imageprecessing method. The galss stage for the gap control and the mask stage for the alignment aredesigned independently for each function.

Auto Regulated Data Provisioning Scheme with Adaptive Buffer Resilience Control on Federated Clouds

  • Kim, Byungsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5271-5289
    • /
    • 2016
  • On large-scale data analysis platforms deployed on cloud infrastructures over the Internet, the instability of the data transfer time and the dynamics of the processing rate require a more sophisticated data distribution scheme which maximizes parallel efficiency by achieving the balanced load among participated computing elements and by eliminating the idle time of each computing element. In particular, under the constraints that have the real-time and limited data buffer (in-memory storage) are given, it needs more controllable mechanism to prevent both the overflow and the underflow of the finite buffer. In this paper, we propose an auto regulated data provisioning model based on receiver-driven data pull model. On this model, we provide a synchronized data replenishment mechanism that implicitly avoids the data buffer overflow as well as explicitly regulates the data buffer underflow by adequately adjusting the buffer resilience. To estimate the optimal size of buffer resilience, we exploits an adaptive buffer resilience control scheme that minimizes both data buffer space and idle time of the processing elements based on directly measured sample path analysis. The simulation results show that the proposed scheme provides allowable approximation compared to the numerical results. Also, it is suitably efficient to apply for such a dynamic environment that cannot postulate the stochastic characteristic for the data transfer time, the data processing rate, or even an environment where the fluctuation of the both is presented.

원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구 (A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator)

  • 이병일;심상한;강정윤;이상래
    • 화약ㆍ발파
    • /
    • 제17권4호
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

유효묻힘깊이에 따른 후설치앵커의 인발성능평가 (An Performance Evaluation of Post-installed Anchor according to the Effective Embedment Length)

  • 허무원;채경훈;안영승;박태원
    • 교육시설 논문지
    • /
    • 제26권4호
    • /
    • pp.19-25
    • /
    • 2019
  • Concrete wedge anchor is one of structural components to transfer load of an object attached to a primary structure. Recently, as retrofitting concrete structure is becoming a main issue, mechanical capacity of the anchor should be secured enough. In spite of the structural safety of Cast-in-place anchor, Post-installed anchor is more widely used with ease of placement or change of construction method. However, the post-installed anchors domestically produced have excessive coefficient of variation over 15% of ultimate tensile strength, which yields deteriorated quality in tensile strength. In this research, tensile strength test of anchors, which have improved sleeve and header and produced by a domestic company, was conducted for two variables, concrete strength and effective embedment depth. As a result, enough coefficients of variations were secured in all specimens. Also, in comparison to foreign products, the domestic ones have equal or higher performance.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

회전근 개 파열의 봉합에서 UU 봉합법은 변형된 MA(Mason-Allen) 봉합법을 대치할 수 있는가? - UU 봉합법과 변형된 MA 봉합법의 생역학적 비교- (Is the UU Stitch Really Alternative to Modified MA (Mason-Allen) Stitch for Rotator Cuff Repair? - Biomechanical Comparative Study of UU to Modified MA Stitch -)

  • ;고상훈;박기봉;전형민;김태원;임현우;염영진
    • Clinics in Shoulder and Elbow
    • /
    • 제12권2호
    • /
    • pp.207-214
    • /
    • 2009
  • 목적: 관절경 하 회전근 개 봉합에서 일반적으로 건-봉합간 접촉면 (tenon-suture interface) 에 약한부위 (weak link)가 형성되어 있어 관절경 하 회전근 개 봉합은 개방적 봉합술보다 높은 재파열율을 가진다. 이 연구의 목적은 봉합사를 뼈에 고정할 때 관절경으로 사용할 수 있는 UU (Ulsan University) 봉합과 개방적 변형 MA (Mason-Allen) 봉합의 강도를 비교하는 것이다. 대상 및 방법: 한 구의 사체 극상근 건을 채취하여 절반으로 나눈 후 다시 절반을 나누어 사체의 어깨 관절 한 구당 네 개의 건을 만들어 총 24개의 검체를 만들었다. 두 봉합 형태 (UU, MA)는 무작위로 선택하였으며 각각의 건에 시행하였다. 검체는 0.25 Hz에서 5~30N의 조절된 외력하에서 50회 주기 부하 (cyclic loading)를 받았다. 각 검체는 초당 1mm의 전이가 되는 상황하에서 파열이 발생할 때(ultimate tensile load)까지 부하를 받았다. 조건 이완 (condition elongation), peak-to-peak 전이(displacement), 기울기 (stiffness), 최대 인장력 (ultimate tensile load), 파열 양상 (mode of failure) 등을 기록하였다. 결과: 주기 부하 실험에서 두 봉합 형태 간 유의 있는 차이는 없었다. 최대 장력 실험에서 UU 봉합과 변형 MA (Mason-Allen) 봉합 간에 통계학적으로 유의한 차이는 없었다 (109.4 N, and 110.6 N). 양 봉합 형태에서 가장 흔한 파열 양상은 봉합의 빠짐 (suture pull-out)이었다. 결론: UU 봉합과 변형 MA 봉합은 유사한 생역학적 특성을 가진다.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

수치해석을 이용한 압축 분산형 앵커의 내하체 최적 간격 산정 (Evaluation of Optimum Spacing between Anchor Bodies of Distributive Compression Anchor Using Numerical Simulation)

  • 구교영;신규범;정충기;김성렬
    • 한국지반공학회논문집
    • /
    • 제35권7호
    • /
    • pp.29-39
    • /
    • 2019
  • 압축 분산형 앵커는 여러 개의 내하체를 이용하여 그라우트에 발생하는 압축응력을 분산시키고 앵커 인장력을 증가시키는 앵커이다. 압축 분산형 앵커의 경우 내하체 사이의 간격이 그라우트 응력에 큰 영향을 미친다. 그러나, 현재까지 내하체 간격에 대한 연구가 매우 부족하며 설계기준 또한 제시되어 있지 않은 실정이다. 그러므로, 본 연구에서는 유한요소 수치해석을 수행하여 내하체 간격이 그라우트 응력분포에 미치는 영향을 분석하였다. 우선, 압축형 앵커에 대해 수행된 현장 재하시험 결과와 비교하여 수치모델링의 적용성을 검증하였다. 그리고, 지반조건, 내하체 간격, 하중크기 등을 변화시키는 변수 연구를 수행하였다. 해석결과, 내하체 간격이 좁아지면 그라우트 최대 압축응력이 증가하며, 내하체 간격이 넓어지면 그라우트에 인장응력이 발생하였다. 그러므로, 그라우트 내 압축응력의 중첩과 인장응력 발생을 최소화하는 내하체 간격을 최적간격으로 정의하고, 지반조건과 하중크기에 따른 최적간격을 제시하였다.