• Title/Summary/Keyword: Load tests

Search Result 3,706, Processing Time 0.03 seconds

Axial Load Transfer Behavior for Driven Open-ended End bearing Steel Pipe Pile (선단지지된 항타개단강관말뚝의 축하중전이거동)

  • 임태경;정성민;정창규;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.589-596
    • /
    • 2002
  • In this study, static pile load tests with load transfer measurement were accomplished in the field. Yield pile capacity (or ultimate pile capacity) determined by load-settlement-time relationship was determined and axial load transfer behavior was analyzed. In the test for the four test piles were behaved as end bearing pile but ratios of skin friction to total pile capacity were 27%∼33%.

  • PDF

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles (강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안)

  • Kim, Do-Hyun;Park, Jong-Jeon;Chang, Yong-Chai;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.43-58
    • /
    • 2018
  • In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

The Experimental Study on Load Sharing Ratio of Group Pile (무리말뚝의 하중분담율에 관한 실험적 연구)

  • Kwon, Oh-Kyun;Oh, Se-Bung;Kim, Jin-Bok;Park, Jong-Un
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.65-70
    • /
    • 2005
  • In this study, the large scale model tests were executed to estimate the Load Sharing Ratio(LSR) of raft in a piled footing under various conditions. The conditions such as the subsoil type, pile length, pile spacing, array type and pile installation method etc. were varied in the pile loading tests about the free-standing group piles and a piled footing. As the results of this study, it was found that there were no differences of the load-settlement curves, along with the pile installation method and subsoil type. The piles supported most of the external load until a yielding load of the piled footing, but the raft supported a considerable load after a yielding load. And it was also found that the LSR didn't be affected by the pile installation method and the subsoil type. As the relative density of sands increased, the LSR decreased. As the pile spacing was wider and the pile length increased, there was a tendancy for the LSR to increase.

  • PDF

Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test (풍동용 3 축 로드셀의 구조최적설계)

  • Lee, Jae-Hoon;Song, Chang-Kon;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

Seismic performance evaluation of mid-rise shear walls: experiments and analysis

  • Parulekar, Y.M.;Reddy, G.R.;Singh, R.K.;Gopalkrishnan, N.;Ramarao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.291-312
    • /
    • 2016
  • Seismic performance evaluation of shear wall is essential as it is the major lateral load resisting member of a structure. The ultimate load and ultimate drift of the shear wall are the two most important parameters which need to be assessed experimentally and verified analytically. This paper comprises the results of monotonic tests, quasi-static cyclic tests and shake-table tests carried out on a midrise shear wall. The shear wall considered for the study is 1:5 scaled model of the shear wall of the internal structure of a reactor building. The analytical simulation of these tests is carried out using micro and macro modeling of the shear wall. This paper mainly consists of modification in the hysteretic macro model, developed for RC structural walls by Lestuzzi and Badoux in 2003. This modification is made by considering the stiffness degradation effect observed from the tests carried out and this modified model is then used for nonlinear dynamic analysis of the shear wall. The outcome of the paper gives the variation of the capacity, the failure patterns and the performance levels of the shear walls in all three types of tests. The change in the stiffness and the damping of the wall due to increased damage and cracking when subjected to seismic excitation is also highlighted in the paper.

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

Reliability Evaluation of Extrapolated Failure Load of Drilled Shafts Embedded in Weathered Rock (풍화암에 근입된 현장타설말뚝의 외삽 파괴하중 신뢰성 분석)

  • Jung, Sung-Jun;Lee, Sang-Inn;Jeon, Jong-Woo;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.993-1000
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the failure load of the pile is attained. If a reliable failure load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a standard for judging the reliability of the failure load of piles that is obtained from extrapolated load test data. To this aim, eleven static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the failure load was re-determined for each extrapolated data by the ASCE 20-96 method (1997). Statistical analysis was performed on the reliability of the re-evaluated failure loads. The results showed that if the ratio of the maximum-available displacement to the failure-load displacement exceeds 0.6, the extrapolated failure load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed standard of judgment was also verified with static load test data of driven piles.

  • PDF