DOI QR코드

DOI QR Code

Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles

강관 매입말뚝의 주면 하중전이 곡선(t-z) 제안

  • 김도현 (연세대학교 토목환경공학과) ;
  • 박종전 (연세대학교 토목환경공학과) ;
  • 장용채 (목포해양대학교 해양.플랜트건설공학과) ;
  • 정상섬 (연세대학교 토목환경공학과)
  • Received : 2018.09.11
  • Accepted : 2018.11.16
  • Published : 2018.12.31

Abstract

In this study, the load-transfer behavior along the shaft of the prebored and precast piles was investigated by pile loading tests. Special attention was given to quantifying the skin frictions developed between the pile-soil interfaces of the 14 instrumented test piles. Based on this detailed field tests, the load - settlement curves and axial load distributions of piles were obtained and the load-transfer curves (t-z curves) for the test piles were proposed. As such, it is found that the test results show two different load transfer behaviors; ductile and brittle behavior curves. The corresponding t-z curves are proposed based on the hyperbolic- and sawtooth-shape, respectively. By validating the accuracy of the proposed curves, it is also found that the prediction results based on the proposed load-transfer curve are in good agreement with the general trends observed by the field loading tests.

본 연구에서는 매입말뚝 주면부의 하중전이 거동을 확인하기 위하여 14본의 강관매입말뚝에 대한 정재하시험을 수행하였다. 정재하시험을 통하여 하중-침하 곡선 및 축하중 분포를 계측하였으며, 그 결과 말뚝-지반 사이에서 발생되는 주면마찰력을 정량화 하였다. 이를 토대로 강관매입말뚝의 일반적인 하중전이곡선 형태를 도출하였다. 본 연구 결과, 말뚝의 주면하중전이 거동은 연성과 취성파괴 두 가지 형태로 나타났다. 그 결과, 강관매입말뚝의 t-z 곡선을 쌍곡선(일수현상이 없는 경우)과 톱니 형태(일수현상이 있는 경우 또는 표준관입저항치, $N{\geq}50$인 풍화암 이상)로 각각 제안하였다. 그때의 최대주면마찰력은 쌍곡선의 경우 지반의 N치 또는 암반의 일축압축강도, 톱니 형태의 경우 주입된 시멘트풀에 의해 형성된 쏘일-시멘트층의 일축압축강도의 영향을 받는 것으로 나타났다.

Keywords

GJBGC4_2018_v34n12_43_f0001.png 이미지

Fig. 1. Shear load-transfer curve (Bilinear)

GJBGC4_2018_v34n12_43_f0002.png 이미지

Fig. 2. Shear load-transfer curve of field load test (Brittle)

GJBGC4_2018_v34n12_43_f0003.png 이미지

Fig. 3. Load transfer curves (Castelli, 1992)

GJBGC4_2018_v34n12_43_f0004.png 이미지

Fig. 4. Grain size distribution curves of field load test

GJBGC4_2018_v34n12_43_f0005.png 이미지

Fig. 5. Test pile embedment and soil condition

GJBGC4_2018_v34n12_43_f0006.png 이미지

Fig. 6. A schematic representation of instrumented piles

GJBGC4_2018_v34n12_43_f0007.png 이미지

Fig. 7. Load-settlement curves of field load test

GJBGC4_2018_v34n12_43_f0008.png 이미지

Fig. 8. Shear load-distribution curve of field load test

GJBGC4_2018_v34n12_43_f0009.png 이미지

Fig. 9. Comparison of shear load-transfer curve load test and proposed (Ductile)

GJBGC4_2018_v34n12_43_f0010.png 이미지

Fig. 10. Comparison of shear load-transfer curve load test and proposed (Brittle)

GJBGC4_2018_v34n12_43_f0011.png 이미지

Fig. 11. Soil profile with borehole and embedment for test piles

GJBGC4_2018_v34n12_43_f0012.png 이미지

Fig. 12. Shear load-transfer curve (Baquelin, Vijayvergiya, Proposed)

GJBGC4_2018_v34n12_43_f0013.png 이미지

Fig. 13. Comparison of load-settlement curves field load test(Baquelin, Vijayvergiya, Proposed)

Table 1. Physical properties of in-situ soil

GJBGC4_2018_v34n12_43_t0001.png 이미지

Table 2. Physical properties of laboratory test

GJBGC4_2018_v34n12_43_t0002.png 이미지

Table 3. Summary of field pile loading test

GJBGC4_2018_v34n12_43_t0003.png 이미지

Table 4. Physical properties of piles (Ductile load transfer curve)

GJBGC4_2018_v34n12_43_t0004.png 이미지

Table 5. Physical properties of weathered rock

GJBGC4_2018_v34n12_43_t0005.png 이미지

Table 6. Comparison of shaft resistance (Measured – Equation)

GJBGC4_2018_v34n12_43_t0006.png 이미지

Table 7. Ultimate unit skin resistance formula

GJBGC4_2018_v34n12_43_t0007.png 이미지

Table 8. Empirical factors for shaft resistance 𝑎, β (Ductile)

GJBGC4_2018_v34n12_43_t0008.png 이미지

Table 9. Physical properties of piles (Brittle load transfer curve)

GJBGC4_2018_v34n12_43_t0009.png 이미지

Table 10. Empirical factors for shaft resistance 𝑎, β (Brittle)

GJBGC4_2018_v34n12_43_t0010.png 이미지

Table 11. Summary of the proposed t-z curves

GJBGC4_2018_v34n12_43_t0011.png 이미지

References

  1. AASHTO (2007), "AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials", Washington, D. C., pp.10-1-10-159.
  2. Baquelin, F., Frand, R., and Jezequel, J.F. (1982), "Parameters for friction piles in marine soils", 2nd lntemational Conference in Numerical Methods for Offshore Piling. Austin.
  3. Bowles, J.E. (1996), "Foundation Analysis and Design", McGraw-Hill, New York, pp.867-967.
  4. Bui, T.Y., Li, Y., Tan, S.A., and Leung, C.F. (2005), "Back Analysis of O-Cell Pile Load Test Using FEM", Proceeding of 16 th International Conference Soil Mechanics and Geotechnical Engineering, Osaka, pp.1959-1962.
  5. Carter, J.P. and Kulhawy, F.H. (1988), Analysis and design ofdrilled shaft foundations socketed into rock, Final report, EL5918/ Project 1493-4 / Electric Power Research Institute, ConellUniv., Ithaca, NY.
  6. Castelli, F., Maugeri. M., and Motta. E. (1992), "Analisii non lineare del cedimento di un palosingolo", Rivista Italiana di Geotechnica. Vol.26, No.2, pp.115-135.
  7. CGS (2006), "Canadian Foundation Engineering Manual", Canadian Geotechnical Society, Richmond, British Columbia, pp.123-142, pp.260-302.
  8. Coyle, H.M. and Reese, L.C. (1966), "Load Transfer for Axially Loaded Piles in Clay", J Soil Mech. and Found. Div., ASCE, Vol.92(2), pp.1-26.
  9. Cho, S.H., Kim, S.I., and Jeong, S.S. (1997), "Shear Load-transfer Characteristics of Drilled Shafts in Weathered Rocks", Journal of the Korean Geotechnical Society, 17(3), pp.305-314.
  10. Cho, H.Y., Jeong, S.S., and Seol, H.I. (2009), "End Bearing Load Transfer Behavior of Rock Socketed Drilled Shafts", Journal of the Korean Geotechnical Society, 25(8), pp.77-93.
  11. Chin, J.T., Chow, Y.K., and Poulos, H.G. (1990), "Numerical analysis of axially loaded vertical piles and pile groups", Computers and Geotechnics.
  12. Coyle, H.M. and Sulaiman, I.H. (1993), "Skin Friction for Steel Pipes in Sand", Journal of Soil Mechanics and Foundations Division, ASCE, Vol.SM6, pp.261-279.
  13. De Beer E. (1981), "H Steel Piles in Dense Sand", Proceedings of 10th International. Conference. on S. M. F. E., Stockholm, pp. 693-698.
  14. FHWA (1998), "Design and Construction of Driven Pile Foundations- Workshop Manual", Volume II, Federal Highway Administration, Mclean, VA, pp.19-20.
  15. FHWA (1999), "Drilled Shaft: Construction Procedures and Design Methods", Federal Highway Administration, Mclean, VA, pp.386-422.
  16. Ghionna, V. N., Jamiolkowski, M., Pedroni, S., and Salgado, R. (1994), "The Tip Displacement of Drilled Shafts in Sands", Vertical and horizontal deformations of foundations and embankments. Geotech, Spec Publ. No.40, 2, pp.1039-1057.
  17. Hassan, K.M. (1994), "Analysis and design of drilled shafts socketed into soft rock", PhD Thesis. Department of Civil and Environmental Engineering. University of Houston. pp.264.
  18. Hassan, K.M. and O'Neill, M.W. (1997), "Side Load-transfer Mechanisms in Drilled Shafts in Soft Argillaceous Rock", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(2): 145-152. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(145)
  19. Hosseini, M. A. and Rayhani, M. (2017), "Evolution of Pile Shaft Capacity Over Time in Marine Soils", International Journal of Geo-Engineering, 8(12).
  20. Hunter, A.H. and Davisson, M.T. (1969), "Measurement of Pile Load Transfer", Performance of Deep Foundations, ASTM, STP 444, pp.874-878.
  21. Jeong, S.S., Lee, J.H., and Lee, C.J. (2004), "Slip Effect at the Pile-soil Interface on Dragload", Computers & Geotechnics, Vol.31, pp.115-126. https://doi.org/10.1016/j.compgeo.2004.01.009
  22. Jung, G.J., Kim, D.H., Lee, C.J., and Jeong, S.S. (2017), "The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence", Journal of the Korean Geo-Environmental Society, 33(1), pp.31-38.
  23. Kang, K.H., Kodikara, J., and Haque, A. (2006), "Numerical Modeling of the Side Resistance Development of Piles in Mudstone with Direct Use of Sidewall Roughness", International Journal of Rock Mechanics and Mining Sciences, Vol.43, No.6, pp.987-995. https://doi.org/10.1016/j.ijrmms.2006.01.002
  24. Korea Expressway Corporation (2012), "Expressway Construction Guide Specification".
  25. Korean Land and Housing Corporation Structural Design Manual (2008), Korean Land and Housing Corporation, Jinju, Korea.
  26. Kim, S. I., Jeong, S. S., Cho, S. H., and Park, I. J. (1999), "Shear Load Transter Characteristics of Drilled Shafts in Weathered Rocks", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125(11), pp.999-1010. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(999)
  27. Kim, Y.H. and Jeong, S.S. (2011), "Analysis of Soil Resistance on Laterally Loaded Piles Based on 3D Soil-Pile Interaction", Computers and Geotechnics, Vol.38, No.2, pp.248-257. https://doi.org/10.1016/j.compgeo.2010.12.001
  28. Lee, Y. and Kim, M. (2008), "Load Transfer Characteristics and Ultimate Bearing Capacity of PHC Pile in Deep Soft Clay Layer", Journal of the Korean Geo-Environmental Society, 9(1), pp.41-46.
  29. Matlock, H., Bogar, D., and Lam., I. (1981), "A Computer Program for the Analysis of Bcam-Columns under Static Axial and Lateral Loading", The Earth Technology Co, Long Beach, California.
  30. Mindlin, R. D. (1936), Force at a point in the interior of a semiinfinite solid, J. Physics 77, & lay, 195.
  31. O'Neill, M.W. and Hassan, K.M. (1994), "Drilled Shafts: Effects of Construction on Performance and Design Criteria", Proceedings of lntemational Conference on Design and Construction of Deep Foundation, Vol.1, Orlando. pp.137-187.
  32. Park, S.W. (2012), "Analyses of Widely Used Design Codes for Pile Foundation Using the t-z Method", Journal of the Korean Geo-Environmental Society, 13(10), pp.33-42.
  33. Park, J.B., Kim, J.S., and Chung, H.S. (2003), "Bearing Capacity Characteristics of SIP Piles", Journal of the Korean Geotechnical Society, 19(1), pp.51-60.
  34. Park, J.J., Jung, G.J., and Jeong, S.S. (2017), "The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence", Journal of the Korean Geo-Environmental Society, 33(1), pp.5-15.
  35. Poulos, H.G. and Davis, E.H. (1980), "Pile Foundation Analysis and Design", John Willy & Sons, pp.71-108, pp.173-193.
  36. Poluos, H.G. and Davis, E.H. (1968), "The Settlement Behavior of Single Axially Loaded Incompressible Piles and Piers", Geotechnique, Vol.18, pp.351-371. https://doi.org/10.1680/geot.1968.18.3.351
  37. Randolph, M. and Wroth, C. (1978), "Analysis of Deformation of Vertically Loaded Piles", Journal of the Soil Mechanics and Foundation Division, Vol.107, pp.1465-1488.
  38. Robinsky, E.I. and Morrison, C.F. (1964), "Sand Displacement and Compaction around Model Friction Pile", Canadian Geotechnical Journal, Vol.1, No.2, pp.81-93. https://doi.org/10.1139/t64-002
  39. Seol, H.I., Jeong, S.S., and Cho, S.H. (2009), "Analytical Method for Load-Transfer Characteristics of Rock-Socketed Drilled Shafts", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.6, pp.778-789. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:6(778)
  40. Tomlinson, M.J. (1994), "Pile Design and Construction Practice", 4th ed. E & FN SPON, pp.33-35, pp.99-122.
  41. Vesic. (1963), "Bearing Capacity of Deep Foundation in Sand", Highway Research Record, Vol.39, pp.112-153.
  42. Vijavergiya, V.N. (1977), "Load-Movement Characteristics of Piles", 4th Annual Symposium of the Waterway, Port, Coastal and Ocean Division of ASCE, Long Beach.
  43. Williams, A.F., Johnston, I. W., and Donald, I. B. (1980), "Thedesign of Socketed Piles in Weak Rock", Proceedings of internationalconference on structural foundations on rock, Balkema, Sydney, pp.327-347.