• 제목/요약/키워드: Load current control

검색결과 1,281건 처리시간 0.023초

Current Sliding Mode Control with a Load Sliding Mode Observer for Permanent Magnet Synchronous Machines

  • Jin, Ningzhi;Wang, Xudong;Wu, Xiaogang
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.105-114
    • /
    • 2014
  • The sliding mode control (SMC) strategy is applied to a permanent magnet synchronous machine vector control system in this study to improve system robustness amid parameter changes and disturbances. In view of the intrinsic chattering of SMC, a current sliding mode control method with a load sliding mode observer is proposed. In this method, a current sliding mode control law based on variable exponent reaching law is deduced to overcome the disadvantage of the regular exponent reaching law being incapable of approaching the origin. A load torque-sliding mode observer with an adaptive switching gain is introduced to observe load disturbance and increase the minimum switching gain with the increase in the range of load disturbance, which intensifies system chattering. The load disturbance observed value is then applied to the output side of the current sliding mode controller as feed-forward compensation. Simulation and experimental results show that the designed method enhances system robustness amid load disturbance and effectively alleviates system chattering.

Single-Phase Improved Auxiliary Resonant Snubber Inverter that Reduces the Auxiliary Current and THD

  • Zhang, Hailin;Kou, Baoquan;Zhang, He;Zhang, Lu
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.1991-2004
    • /
    • 2016
  • An LC filter is required to reduce the output current ripple in the auxiliary resonant snubber inverter (ARSI) for high-performance applications. However, if the traditional control method is used in the ARSI with LC filter, then unnecessary current flows in the auxiliary circuit. In addressing this problem, a novel load-adaptive control that fully uses the filter inductor current ripple to realize the soft-switching of the main switches is proposed. Compared with the traditional control implemented in the ARSI with LC filter, the proposed control can reduce the required auxiliary current, contributing to higher efficiency and DC-link voltage utilization. In this study, the detailed circuit operation in the light load mode (LLM) and the heavy load mode (HLM) considering the inductor current ripple is described. The characteristics of the improved ARSI are expressed mathematically. A prototype with 200 kHz switching frequency, 80 V DC voltage, and 8 A maximum output current was developed to verify the effectiveness of the improved ARSI. The proposed ARSI was found to successfully operate in the LLM and HLM, achieving zero-voltage switching (ZVS) of the main switches and zero-current switching (ZCS) of the auxiliary switches from zero load to full load. The DC-link voltage utilization of the proposed control is 0.758, which is 0.022 higher than that of the traditional control. The peak efficiency is 91.75% at 8 A output current for the proposed control, higher than 89.73% for the traditional control. Meanwhile, the carrier harmonics is reduced from -44 dB to -66 dB through the addition of the LC filter.

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

3상 UPS용 인버터의 강인한 비간섭 디지털제어 (Robust Decoupling Digital Control of Three-Phase Inverter for UPS)

  • 박지호;허태원;신동렬;노태균;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

입력 전류의 측정이 필요없는 Boost 컨버터의 역률 보정에 관한 연구 (A Study On The Power Factor Correction Of The Boost Converter Without The Input Current Measurement)

  • 조상준;이광원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.376-378
    • /
    • 1996
  • This paper presents a new PFC control method which replaces a fast line current measurement with a filtered load current measurement. Using the power balance relation between the input and the output of the boost converter. the input current can be described as the function of load current. Thus the PWM signal which effects the switching control of the boost converter is generated using the PFC input voltage, the PFC output voltage and the load current as input variables. By using a filter between the bridge rectifier and a dc-to-dc converter, the input voltage of the dc-to-dc converter is forced to always maintain above zero volt. Then the input current traces a sinewave in phase. The proposed scheme accomplishes a very high power factor and a low harmonic distortion of the line current. The validity of this scheme is demonstrated through simulation.

  • PDF

High Performance Current Controller for Sparse Matrix Converter Based on Model Predictive Control

  • Lee, Eunsil;Lee, Kyo-Beum;Lee, Young Il;Song, Joong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1138-1145
    • /
    • 2013
  • A novel predictive current control strategy for a sparse matrix converter is presented. The sparse matrix converter is functionally-equivalent to the direct matrix converter but has a reduced number of switches. The predictive current control uses a model of the system to predict the future value of the load current and generates the reference voltage vector that minimizes a given cost function so that space vector modulation is achieved. The results show that the proposed controller for sparse matrix converters controls the load current very effectively and performs very well through simulation and experimental results.

전류제어 PWM인버터의 HC에 대한 제어방식과 내부 피이드백제어의 특성 (The Characteristics of Control Scheme and Inner Feedback Control with HC of Current-Controlled PWM Inverter)

  • 정동화;배진호
    • 대한전기학회논문지
    • /
    • 제41권9호
    • /
    • pp.1031-1041
    • /
    • 1992
  • Existing current-controlled inverters with hysteresis controller (HC) result in the dependence of the inverter on its load characteristics, poor inverter utilization due to too much or too little supply voltage, and the current error in the hysteresis band(HB) which causes deterioration of operation of the supplied motor. In this paper, techniques and results of modeling the operation of current-controlled three phase power inverter with HC are presented. Four symmetrical control schemes are considered: the so called three independent control, three semi-dependent control(a), three semi-dependent control(b) and three dependent control each using three current controller. The dependence of the inverter on its load has been studied. To overcome this difficulty, an inner feedback control has been introduced and optimum parameter has been determined. With the addition of an inner feedback control, adjustment of the switching frequency to a desired value is possible. Also, this modification improves operating characteristics of inverter by enforcing a switching pattern of low dependence on the load, resulting in significantly improved quality of the output current.

  • PDF

배전계통의 분포 부하 모델링을 통한 최적화 IVVC 알고리즘 (Integrated Volt/Var Control Algorithm based on the Distributed Load Modeling of Distribution Network)

  • 김영인;임일형;최면송;이승재;이성우;권성철
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1463-1471
    • /
    • 2009
  • In this paper, a new algorithm of Integrated Volt/Var Control (IVVC) is proposed using Volt/Var control for the Distribution Automation System (DAS) based on the modeling of the distributed load and the distributed current. In the proposed, the load flow based on the modeling of the distributed load and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU). For Integrated Volt/Var Control (IVVC), the gradient method is applied to find optimal solution for tap and capacity control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), and SC (Shunt Condenser). What is more Volt/Var control method is proposed using moving the tie switch as well as IVVC algorithm using power utility control. In the case studies, the estimation and simulation network have been testified in Matlab Simulink.

정지형 UPS의 병렬운전 제어 (The Parallel Operation Control of Static UPSs)

  • 민병권;원충윤
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어 (Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load)

  • 권병기;정승기;김태형
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.