• Title/Summary/Keyword: Load carrying performance

Search Result 311, Processing Time 0.023 seconds

Development of New Retrofitting Technology of RC Beams using High-Performance Carbon Fiber Bar and Strengthening Metal Fittings (고성능 탄소섬유봉과 보강철물을 이용한 철근콘크리트 보의 보강 신기술 개발)

  • 하기주;신종학;박연동;전찬목;이영범;김기태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.805-810
    • /
    • 2002
  • An experimental study was carried out to evaluate the structural performance of new retrofitting technology using high performance carbon fiber bar and strengthening metal fittings. Experimental programs were accomplished to evaluate the structural performance of test specimens, such as load-displacement relationship, crack propagation, ductility, and strain of retrofitting materials etc.. Specimens(BCR2, BCR2-AF1) designed with the new retrofitting technology using high-performance carbon fiber bar and strengthening metal fittings showed much higher load-carrying capacity and ductility compared to specimens(BC1P, BC2P, BS30) designed with the conventional retrofitting method.

  • PDF

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

An Experimental Study on the Improvement of Structural Performance for Concrete Structure Spraying Composite Polyurea (복합폴리우레아를 도포한 콘크리트 구조물의 구조성능 개선에 관한 실험적 연구)

  • Cho, Dong-Ho;Kim, Jin-Bong;Kim, Tae-Wan;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study investigates the applicability of composite polyurea to contain fiber reinforcement like fiber glass, steel fiber and carbon nanotube. Polyurea as elastomer is an excellent water-proofing material with many mechanical characteristics such as high tensile strength, ductility, high rate of expansion and contraction, and so on. The reinforcing fibers can be utilized for improving the load-carrying capacity of concrete structures. The polyurea plays a role to improve the ductility and toughness. Composite polyurea takes the mechanical advantages of the fibers and the polyurea. The test variables include the type of reinforcing fiber, its spraying thickness, and its weight ratio contained in the composite polyurea. It is observed that the load-carrying capacity, and the ductility and toughness are improved with the increase in the spraying thickness and the weight ratio contained in the composite polyurea. It is expected that the composite polyurea can be widely utilized in enhancing the structural and seismic performance.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Static Characteristics of Micro Gas-Lubricated proceeding Bearings with a Slip Flow (미끄럼 유동을 고려한 초소형 공기 베어링의 정특성)

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.137-142
    • /
    • 2002
  • The fluid mechanics and operating conditions of gas-lubricated proceeding bearings in micro rotating machinery such as micro polarization modulator and micro gas turbine are different from their larger size ones. Due to non-continuum effects, there is a slip of gas at the walls. Thus in this paper, the slip flow effect is considered to estimate the pressure distribution and load-carrying capacity of micro gas-lubricated proceeding bearings as the local Knudsen number at the minimum film thickness is greater than 0.01. Based on the compressible Reynolds equation with slip flow, the static characteristics of micro gas-lubricated proceeding bearings are obtained. Numerical predictions compare the pressure distribution and load capacity considering slip flow with the performance of micro proceeding bearings without slip f]ow for a range of bearing numbers and eccentricities. The results clearly show that the slip flow effect on the static characteristics is considerable and becomes more significant as temperature increases.

  • PDF

Structural Evaluation and Remediation of Floor Slab Deflection

  • Park, Ki-Dong;Kim, Dae-Young;Joung, Dae-Ki
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • A 4-story reinforced concrete structure built above an underground parking garage shows some slab deflections, and the deflections of the concrete floor slabs are proposed to be alleviated by the application of light-weight topping material in conjunction with localized strengthening of the slabs. The application of light-weight concrete topping on the existing slab has been simulated and its performance to anticipated loads has been analyzed. The application of light-weight topping material imposes additional weight on the exiting floor slabs. This added weight on the existing slabs causes over-stressing of the slabs. This over-stressing can be alleviated by enhancing the load carrying capacity of the existing slabs. Additional load carrying capacity in the existing slabs can be developed by localized strengthening of the slabs utilizing techniques such as the application of fiber-reinforced composites on the bottom surface of the slabs, and application of fiber-reinforced composites adequately complements the capacity of the existing slabs to bear the additional load imposed by light-weight leveling material. Additional moments in the beam and columns induced by the application of the light-weight topping material were tabulated and compared with capacity. The moment D/C ratios of the beam and columns are well the range of acceptable limits, and the beam and columns are not overstressed by the application of the surcharge.

  • PDF

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals (철근콘크리트 내진벽의 구조성능 평가 및 개선)

  • 신종학;하기주;안준석;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Structural behaviour of HFRC beams retrofitted for shear using GFRP laminates

  • Vinodkumar, M.;Muthukannan, M.
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • This paper summarizes the experimental study of the shear behaviour of Hybrid Fibre Reinforced Concrete (HFRC) beams retrofitted by using externally bonded Glass Fibre Reinforced Polymer (GFRP) laminates. To attain the set-out objectives of the present investigation, steel fibre of 1% and polypropylene fibre of 0.30% was used for hybrid steel-polypropylene fibre reinforced concrete: whereas for hybrid glass-polypropylene fibre reinforced concrete, glass fibre by 0.03% and polypropylene fibre of 0.03% by volume of concrete was used. In this study, 9 numbers of beams were cast and tested into three groups (Group I, II & III). Each group containing 3 numbers of beams, out of which one serve as a control beam or a hybrid steel-polypropylene fibre reinforced concrete beam or a hybrid glass - polypropylene fibre reinforced concrete beam and the remaining two beams were preloaded until shear cracks appeared up to 75% of ultimate load and then preloaded beams (damaged beams) were retrofitted with GFRP laminates at shear zone in the form of strips, as one beam in vertical position and another beam in inclined position to restrict the shear cracks. Finally, the retrofitted beams were loaded until failure and test results were compared. The experimental tests have been conducted to investigate various parameters of structural performance, such as load carrying capacity, crack pattern and failure modes, load-deflection responses and ductility relations. The test results revealed that beams retrofitted using GFRP laminates considerably increased the load carrying capacity. In addition, it was found that beams retrofitted with inclined strip offers superior performance than vertical one. Comparing the test results, it was observed that hybrid steel-polypropylene fibre reinforced concrete beam retrofitted with GFRP laminates showed enhanced behaviour as compared to other tested beams.