• 제목/요약/키워드: Load carrying performance

검색결과 310건 처리시간 0.029초

상시진동을 이용한 교량 내하력 추정 알고리즘의 실험적 성능 검증 (Experimental Performance Verification of Load Carrying Capacity Algorithm of Bridges using Ambient Vibration)

  • 이우상;박기태;한성호
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.83-90
    • /
    • 2010
  • In this study, it is conducted that the performance verification of the ambient load carrying capacity algorithm using long-term measurement systems of bridges. For this purpose, a steel-box type model bridge is fabricated and the public load carrying capacity of a steel-box model bridge is estimated by conducting the numerical analysis and load test. In addition, we compare the public load carrying capacity with the estimated result of a steel-box model bridge using the ambient load carrying capacity algorithm. By the assessment result, it is shown that the estimated ambient load carrying capacity is the difference of approximately 6.0 percentages as compared with the public load carrying capacity.

가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구 (Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings)

  • 김태호;이태원;박문성;박정민;김진성;정진희
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

이중범프 공기포일베어링의 성능시험 (Performance Test of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.108-113
    • /
    • 2009
  • This paper presents a experimental results for the performance evaluation of a double-bumped air foil bearing. The test results of a double-bumped AFB is compared with a single-bumped AFB at a heavily-loaded condition. The diameter of the test bearing is 50 mm, and the axial length is 50 mm. Nominal clearance of the single-bumped AFB is evaluated as $105{\mu}m$, and that of the double-bumped AFB is as $95{\mu}m$. The test of the AFBs are demonstrated at 3 test mode; the load variation mode, the speed variation mode, and start-stop mode. The single-bumped AFB demonstrated a upward load-carrying capacity of 95 N and a downward load-carrying capacity of 130 N at 20,000 rpm. The double-bumped AFB demonstrated a upward load-carrying capacity of 170 N and a downward load-carrying capacity of 170 N at 20,000 rpm. The single-bumped AFB demonstrated a downward lift-off speed of 16,300 rpm at 105 N. The double-bumped AFB demonstrated a downward lift-off speed of 15,400 rpm at 105 N. The start-stop test of the AFBs assure 5,000 cycle endurance life. The test results are compared with the theoretical calculation results. The test and theorectical results show thata double-bump air foil bearing provides a higher load-carrying capacity, stiffness and damping than a single-bump air foil bearing in a heavily-loaded condition.

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

평행선 지지식 추력베어링에 관한 연구 (A Study on the Parallel Line Pivoted Pad Thrust Bearing)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.24-28
    • /
    • 1999
  • This paper describes a new pivoting technique to improve bearing performance in pivoted pad thrust bearings. This new technique adjusts the pivot line in a line pivoted pad thrust bearing to be parallel to the trailing edge of a sector shaped pad. Bearing performance factors such as load carrying capacity, frictional torque and flow rate are numerically investigated for conventional point-pivoted and line-pivoted pads and for the new parallel-line pivoting technique. It is shown that the load carving capacity can be maximized with the new technique.

철근콘크리트 골조의 내진보강을 위한 신기술 개발 (Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF

Structural performance of novel SCARC column under axial and eccentric loads

  • Zhou, Chunheng;Chen, Zongping;Li, Junhua;Cai, Liping;Huang, Zhenhua
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.503-516
    • /
    • 2020
  • A novel spiral confined angle-steel reinforced concrete (SCARC) column was developed in this study. A total of 16 specimens were prepared and tested (eight of them were tested under axial loading, the other eight were tested under eccentric loading). The failure processes and load-displacement relationships of specimens under axial and eccentric loads were examined, respectively. The load-carrying capacity and ductility were evaluated by parametric analysis. A calculation approach was developed to predict the axial and eccentric load-carrying capacity of these novel columns. Results showed that the spiral reinforcement provided enough confinement in SCARC columns under axial and low eccentric loads, but was not effective in that under high eccentric loads. The axial load-carrying capacity and ductility of SCARC columns were improved significantly due to the satisfactory confinement from spirals. The outer reinforcement and other construction measures were necessary for SCARC columns to prevent premature spalling of the concrete cover. The proposed calculation approach provided a reliable prediction of the load-carrying capacity of SCARC columns.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC

  • Turk, Kazim;Kina, Ceren;Oztekin, Erol
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2020
  • The aim of this study is to investigate the flexural performance of hybrid fiber reinforced self-compacting concrete (HFRSCC) having different ratio of micro and macro steel fiber. A total of five mixtures are prepared. In all mixtures, the sum of the steel fiber content is 1% and also water/binder ratio is kept constant. The amount of high range water reducer admixture (HRWRA) is arranged to satisfy the workability criteria of self-compacting concrete. Four-point bending test is carried out to analyze the flexural performance of the mixtures at 28 and 56 curing days. From the obtained load-deflection curves, the load carrying capacity, deflection and toughness values are investigated according to ASTM C1609, ASTM C1018 and JSCE standards. The mixtures containing higher ratio of macro steel fiber exhibit numerous micro-cracks and, thus, deflection-hardening response is observed. The mixture containing 1% micro steel fiber shows worst performance in the view of all flexural parameters. An improvement is observed in the aspect of toughness and load carrying capacity as the macro steel fiber content increases. The test results based on the standards are also compared taking account of abovementioned standards.

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.