• Title/Summary/Keyword: Load Fluctuation

Search Result 271, Processing Time 0.022 seconds

Power Factor Improvement of Distribution System with EV Chargers based on SMC Method for SVC

  • Farkoush, Saeid Gholami;Kim, Chang-Hwan;Jung, Ho-Chul;Lee, Sanghyuk;Theera-Umpon, Nipon;Rhee, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1340-1347
    • /
    • 2017
  • Utilization of Electric Vehicles (EVs) have been growing popularity in recent years due to increment in fuel price and lack of natural resources. Random unexpected charging by home EV charger in distribution is predicted in the future. The power quality problems such as fluctuation of power factor in a residential distribution network was explored with random EV chargers. This paper proposes a high-performance nonlinear sliding mode controller (SMC) for an EV charging system to compensate voltage distortions and to enhance the power factor against the unbalanced EV chargers. For the verification of the proposed scheme, MATLAB-Simulink simulations are performed on 22.9-kV grid. The results show that the proposed scheme can improve the power factor of a smart grid due to the EV chargers on the grid.

A Study on the Fliker Effect of SVC in Electric Arc Furnace Loads (전기로 부하에서 SVC의 플리커 효과에 관한 연구)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Lee, Il-Moo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.48-53
    • /
    • 2006
  • An electric arc furnace being used in the steel industry is a time-varying non-linear load causing voltage fluctuations to the power system. Flicker can be defined as the effect produced on the human visual perception by a changing emission of light lamps subjected to magnitude fluctuations of their supply voltage. The level of flicker depends on the amplitude, frequency and duration of the voltage fluctuations. In this paper, the voltage fluctuation problem in an 154[kV] system due to the electric arc furnace loads is investigated and the analysis results of the static var compensator application for the voltage flicker mitigation are presented and evaluated by the IEC 61000-3-7.

Determination of Power-Quality Disturbances Using Teager Energy Operator and Kalman Filter Algorithms

  • Cho, Soo-Hwan;Kim, Jeong-Uk;Chung, Il-Yop;Han, Jong-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • With the development of industry, more large-scale non-linear loads are added to existing power systems and they cause the serious power quality (PQ) problems to the nearby sensitive installations more and more. To protect the important loads and mitigate the impact of PQ disturbances on them, various compensating devices are installed. One of the most important control skills used in the compensating equipment at the load side is how fast they can recognize or detect the discontinuous abnormal PQ events from the normal voltage signal. This paper deals with two estimation methods for the fast detection and tracking of general PQ disturbances: Teager Energy Operator (TEO), which is a non-linear operator and used for a short time energy calculation, and Kalman Filter (KF), which is one of the most universally used estimation techniques. And it is also shown how to apply the TEO and the KF to detect the PQ disturbances such as voltage sag, swell, interruption, harmonics and voltage fluctuation.

Reliability Evaluation with Wind Turbine Generators and an Energy Storage System for the Jeju Island Power System (제주도 계통에서의 풍력발전기 및 ESS를 고려한 신뢰도 평가)

  • Oh, Ungjin;Lee, Yeonchan;Lim, Jintaek;Choi, Jaeseok;Yoon, Yongbeum;Chang, Byunghoon;Cho, Sungmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This paper proposes probabilistic reliability evaluation model of power system considering Wind Turbine Generator(WTG) integrated with Energy Storage System(ESS). Monte carlo sample state duration simulation method is used for the evaluation. Because the power output from WTG units usually fluctuates randomly, the power cannot be counted on to continuously satisfy the system load. Although the power output at any time is not controllable, the power output can be utilized by ESS. The ESS may make to smooth the fluctuation of the WTG power output. The detail process of power system reliability evaluation considering ESS cooperated WTG is presented using case study of Jeju island power system in the paper.

Sloshing Reduction Characteristics to Baffle for Cylindrical Liquefied Fuel Tank subject to Dynamic Load (동하중을 받는 원통형 액화연료 탱크의 배플에 따른 슬로싱 저감 특성)

  • Koo, Jun-Hyo;Cho, Jin-Rae;Jeong, Weui-Bong;Kim, Dang-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.950-959
    • /
    • 2009
  • Liquid fluctuation called sloshing within liquid-storage tank gives rise to the significant effect on the dynamic stability of tank. This liquid sloshing can be effectively suppressed by installing baffles within the tank, and the suppression effect depends strongly on the design parameters of baffle like the baffle configuration. The present study is concerned with the parametric evaluation of the sloshing suppression effect for the CNG-storage tank, a next generation liquefied fuel for vehicles, to the major design parameters of baffle, such as the baffle configuration, the installation angle and height, the hole size of baffle. The coupled FEM-FVM analysis was employed to effectively reflect the interaction between the interior liquid flow and the tank elastic deformation.

Reliability Evaluation of Power system considering Wind Turbine Generators and Multi-Energy Storage System In JeJu Island (풍력발전원과 다개 ESS를 고려한 제주도 계통에서의 신뢰도 평가)

  • Oh, Ungjin;Lim, Jintaek;Lee, Yeonchan;Phuong, Do Nguyen Duy;Choi, Jaeseok;Yoon, Yongbeum;Chang, Byunghoon;Cho, Sungmin
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.473-474
    • /
    • 2015
  • This paper proposes probabilistic reliability evaluation model of power system considering Wind Turbine Generator(WTG) integrated with Energy Storage System(ESS). Monte carlo sample state duration simulation method is used for the evaluation. The power output from WTG units usually fluctuates randomly. Therefore, the power cannot be counted on to continuously satisfy the system load. Although the power output at any time is not controllable, the power output can be utilized when needed if ESS is available. The ESS may make to smooth the fluctuation of the WTG power output. The detail process of power system reliability evaluation considering Multi-ESS cooperated WTG is presented using case study of Jeju island power system in the paper.

  • PDF

Measurement of Radiative Heat Flux of Kick Motor at Ground Test (킥 모터 지상 시험의 플룸 복사 열유속 측정)

  • Kim, Seong-Lyong;Choi, Sang-Ho;Ko, Ju-Yong;Kim, In-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.440-443
    • /
    • 2008
  • Plume radiation has been measured during ground tests of KSLV-I kick motor in order to predict the thermal load on the equipment around the kick motor at flight. The measuring positions are the kick motor base, and the measured heats were about 2${\sim}$5 w/cm$^2$. The measured heat showed a lot of shot fluctuation in their values, and the radiative heats at the latter half of time are higher than those of the first half. A plausible explanation for these phenomena was given as the variation of alumina particles with time. The radiative heats along the plume axis were also measured recently at 8 positions with 1.5m radius from plume axis, but only the initial parts of the results could be acceptable because the sensor were damaged by the accumulated heat. The strongest heat occurred at the middle of the plume, which can be explained with different view factors. Despite of the plausible explanation, it seems to need more analysis because the plume structure such as temperature, alumina particle, after burning has not been revealed until yet. The measure heat flux has been reflected in the prediction of the plume radiation at high altitude where the kick motor operates.

  • PDF

Hydrodynamic performance of a pump-turbine model in the "S" characteristic region by CFD analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1017-1022
    • /
    • 2015
  • Specific hydrodynamic characteristic of pump-turbine during the start and load rejection process of generating mode causes anomalous increase of water pressure, along with large machine vibration, called "S" characteristic. The aim of this study is to understand and explain the hydrodynamic performance of pump-turbine at "S" characteristic region by using a model of pump-turbine system. The operation in the condition of runway and low discharge in a typical "S" characteristic curve may become unstable and complex flow appears at the passage of guide vane and impeller. Therefore, velocity and pressure distribution are investigated to give an all-sided explanation of the formation and phenomenon of this characteristic, with the assistance of velocity triangle analysis at the impeller inlet. From this study, the internal flow and pressure fluctuation at the normal, runway and low discharge points are explored, giving a deep description of hydrodynamic characteristic when the pump-turbine system operates with "S" characteristic.

Theoretical Analysis and Control of DC Neutral-point Voltage Balance of Three-level Inverters in Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.344-356
    • /
    • 2012
  • In recent years, multilevel technology has become an effective and practical solution in the field of moderate and high voltage applications. This paper discusses an APF with a three-level NPC inverter. Obviously, the application of such converter to APFs is hindered by the problem of the voltage unbalance of DC capacitors, which leads to system instability. This paper comprehensively analyzes the theoretical limitations of the neutral-point voltage balancing problem for tracking different harmonic currents utilizing current switching functions from the space vector PWM (SVPWM) point of view. The fluctuation of the neutral point caused by the load currents of certain order harmonic frequency is reported and quantified. Furthermore, this paper presents a close-loop digital control algorithm of the DC voltage for this APF. A PI controller regulates the DC voltage in the outer-loop controller. In the current-loop controller, this paper proposes a simple neutral-point voltage control method. The neutral-point voltage imbalance is restrained by selecting small vectors that will move the neutral-point voltage in the direction opposite the direction of the unbalance. The experiment results illustrate that the performance of the proposed approach is satisfactory.

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.