• Title/Summary/Keyword: Load Carrying Performance

Search Result 310, Processing Time 0.029 seconds

Corrosion of Reinforcement and Its Effect on Structural Performance in Marine Concrete Structures

  • Yokota, Hiroshi;Kato, Ema;Iwanami, Mitsuyasu
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.297-303
    • /
    • 2007
  • This paper discusses the chloride-induced corrosion of reinforcement in marine concrete structures focusing on the variability in the progress of deterioration. Through tests and analyses of reinforced concrete slabs taken out from existing open-pile structures that have been in service for 30 to 40 years, the following topics were particularly discussed: variation in chloride ion profiles of concrete, variation in corrosion properties of reinforcement embedded in concrete, and influence of the reinforcement corrosion on the load-carrying capacity of the concrete slabs. As a result, their variability was found to be very large even in one reinforced concrete slab with almost the same conditions. It was also discussed how to determine the calculation parameters for prediction of decreasing in load-carrying capacity of concrete members with chloride-induced corrosion of reinforcement.

Experimental study on innovative sections for cold formed steel beams

  • Dar, M.A.;Yusuf, M.;Dar, A.R.;Raju, J.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1599-1610
    • /
    • 2015
  • Cold Formed Steel members are widely used in today's construction industry. However the structural behavior of light gauge high strength cold formed steel sections characterized by various buckling modes are not yet fully understood. Because of their simple forming and easy connections, the commonly used cold formed sections for beams are C and Z. However both these sections suffer from certain buckling modes. To achieve much improved structural performance of cold formed sections for beams both in terms of strength and stiffness, it is important to either delay or completely eliminate their various modes of buckling. This paper presents various innovative sectional profiles and stiffening arrangements for cold formed steel beams which would successfully contribute in delaying or eliminating various modes of premature buckling, thus considerably improving the load carrying capacity as well as stiffness characteristics of such innovative cold formed sections compared to conventional cold formed steel sections commonly used for beams.

Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: Experimental study

  • Zhu, Y.;Su, R.K.L.;Zhou, F.L.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.149-172
    • /
    • 2007
  • An experimental study of five full-scale coupling beam specimens has been conducted to investigate the seismic behavior of strengthened RC coupling beams by bolted side steel plates using a reversed cyclic loading procedure. The strengthened coupling beams are fabricated with different plate thicknesses and shear connector arrangements to study their respective effects on load-carrying capacity, strength retention, stiffness degradation, deformation capacity, and energy dissipation ability. The study revealed that putting shear connectors along the span of coupling beams produces no significant improvement to the structural performance of the strengthened beams. Translational and rotational partial interactions of the shear connectors that would weaken the load-carrying capacity of the steel plates were observed and measured. The hierarchy of failure of concrete, steel plates, and shear connectors was identified. Furthermore, detailed effects of plate buckling and various arrangements of shear connectors on the post-peak behavior of the strengthened beams are discussed.

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.

Shear Behavior and Performance of Deep Beams Made with Self-Compacting Concrete

  • Choi, Y.W.;Lee, H.K.;Chu, S.B.;Cheong, S.H.;Jung, W.Y.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.65-78
    • /
    • 2012
  • An experimental study was carried out to evaluate fresh properties of a moderately high-strength (high-flowing) self-compacting concrete (SCC) and to investigate shear behavior and performance of deep beams made with SCC. Fresh and hardened properties of normal concrete (NC) and SCC were evaluated. The workability and compacting ability were observed based on casting time and number of surface cavities, respectively. Four-point loading tests on four deep beams (two made with SCC and two with NC) were then conducted to investigate their shear behavior and performance. Shear behavior and performance of beams having two different web reinforcements in shear were systematically investigated in terms of crack pattern, failure mode, and load-deflection response. It was found from the tests that the SCC specimen having a normal shear reinforcement condition exhibited a slightly higher load carrying capacity than the corresponding NC specimen, while the SCC specimen having congested shear reinforcement condition showed a similar load carrying capacity to the corresponding NC specimen. In addition, a comparative study between the present experimental results and theoretical results in accordance with ACI 318 (Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary-ACI 318R-89, 1999), Hsu-Mau's explicit method (Hsu, Cem Concr Compos 20:419-435, 1998; Mau and Hsu, Struct J Am Concr Inst 86:516-523, 1989) and strut-and-tie model suggested by Uribe and Alcocer (2002) based on ACI 318 Appendix A (2008) was carried out to assess the applicability of the aforementioned methods to predict the shear strength of SCC specimens.

Short - and Long-term Load Carrying Capacity of Geogrid Reinforced Stone Column - A numerical investigation (지오그리드 보강 Stone Column의 장.단기 하중 지지 특성 - 유한요소해석을 통한 고찰)

  • Lee, Dae-Young;Kim, Sun-Bin;Song, Ah-Ran;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.434-444
    • /
    • 2006
  • The stone column method is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquiefaction resistance, among others. Recently, geosynthetic-encased stone column approach has been developed to improve its' load carrying capacity through increasing confinement effect. Although such a concept has successfully applied in practice, fundamentals of the method have not been fully explored. This Paper Presents the results of an investigation on the loading carriying capacity of geogrid-encased stone column using a series of 2D finite element analyses. The results of the analyses indicated improved short- and long-term carrying capacity of the geogrid-encased stone column method over the conventional strone column method with no encasing.

  • PDF

Improvement and Evaluation of Earthquake Resistant Retrofit Techiques for Remodeling of Structural Performance in Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 리모델링을 위한 내진보강 기술의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Lee, Sang-Mog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.175-182
    • /
    • 2001
  • Five reinforced concrete frames were constructed and tested to study the structural performance of retrofitting effect reinforced concrete frame during and load revesals simultaneously. All specimens were modeling in one-third scale size. Experimental research was carried out to develop and evaluate the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, ALC panel, steel plate system with or without stiffener. Experimental programs wore carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFAR, RFSR, RFSR-S), designed by the improvement of earthquake-resistant performance, were attained more load-carrying capacity, energy dissipation capacity, and stable hysteretic behavior.

  • PDF

Lubrication Effect of Journal Bearing according to its Eccentricity and Attitude Angle (베어링 편심도와 자세각에 따른 저어널 베어링의 윤활효과)

  • Kim, Jong-Do;Wang, Yi-Jun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • The thickness of adsorbed molecular layers is the most critical factor in studying thin-film lubrication, and it is the most essential parameter that distinguishes thin-film from thick-film lubrication analysis. The thin film between the shaft and bearing surface within a very narrow gap was considered. The general Reynolds equation has been derived for calculating thin-film lubrication parameters affecting the performance of the circular journal bearing. Investigation of the load-carrying capacity and pressure distribution for the journal bearing considering the adsorbed layer thickness has been carried out. A Reynolds equation appropriate for the journal bearing is used in this paper for the analysis, and it is discussed using the finite difference method of the central difference scheme. The parameters, such as eccentricity and attitude angle, are used for discussing the load-carrying capacity of the journal bearing. The results reported in this paper should be applied to analysis of the journal bearing with different lubrication factors. The steady-state analysis of the journal bearing is conducted using the Reynolds model under thin-film lubrication conditions. For a journal bearing, several parameters, such as a pressure, load capacity, and pressure components of the bearing can be obtained, and these results can be stored in a sequential data file for later analysis. Finally, their distribution can be displayed and analyzed easily by using the MATLAB GUI technique. The load-carrying capability of the journal bearing is observed for the specified operating conditions. This work could be helpful for the understanding and research of the mechanism of thin-film lubrication.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Reynolds Number Dependence of Bearing Performance

  • Kim E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.149-154
    • /
    • 1997
  • Based on the full Navier-Stokes solutions, the thermohydrodynamic performance of a long journal bearing is investigated. A numerical method based on Galerkin's procedure and B-spline test functions has been presented for solving two-dimensional problems involving fluid flow and heat transfer. For numerical stability the artificial compressibility is employed to the conservation of mass. The discretized algebraic equations are solved by Newton's method. Effects of varying the speed of an inner cylinder to load carrying capacity are investigated. The results indicated that the increase of the speed of an inner cylinder has a significant effect on the temperature profile and ultimately on the performance.

  • PDF