• Title/Summary/Keyword: Load Applied Angle

Search Result 358, Processing Time 0.023 seconds

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Shear Strength of Anchors under Load Applied Angle and a Group Anchors at an Edge (앵커간격 및 하중방향에 따른 앵커의 전단내력)

  • Kim, Sung-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.133-141
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure of the anchors under load applied angle and an group anchors at an edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Finite Element Analysis and Material Mechanics of Paper Angle (종이 앵글 포장재의 재료역학적 특성과 유한요소해석)

  • Park J. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.347-353
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector, But, in the future, paper angle will be applied to package design of heavy product such as strength reinforcement or unit load system (ULS). Therefore. understanding of buckling behavior fur angle itself, compression strength and quality standard are required. The objectives of this study were to characterize the buckling behavior by theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, as applied load level was bigger and/or the length of angle was longer, incresing rate of buckling of asymmetric paper angle was higher than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia significantly increased as the extent of asymmetric angle increased, and buckling orientation of angle was open- direction near the small web. Incresing rate of maximum compression strength (MCS) for thickness of angle decreased as the web size increased in symmetric angle. MCS of asymmetric angle of 43${\times}$57 and 33${\times}$67 decreased $15{\~}18\%$ and $65{\~}78\%$, and change of buckling increased $12{\~}13\%$ and $62{\~}66\%$, respectively.

A Study on Load Transfer Efficiency of Skewed Transverse Joint of Concrete Pavement by the Fatigue Test (피로실험에 의한 콘크리트 포장체 경사가로줄눈부의 하중전달율에 관한 연구)

  • Hwang, Seung-Eui;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.203-211
    • /
    • 2001
  • This paper presents load transfer efficiency of skewed transverse joint of jointed concrete pavement with the fatigue model test. A 1/12 scale model was used to satisfy the geometry, loading, material similitude, which are variables to the skew angel of transverse joint. As the test results by fatigue load 700kgf applied, the deflection and stress of transverse joint were decreased as to increasing of skew angle of transverse joint. In addition, load transfer efficiency of transverse joint with skew angle is better than the load transfer efficiency of transverse joint without skew angle.

  • PDF

Development of a Finite Element Model for Evaluating Torsional Stiffness of the Frame of a Large Truck (대형트럭 프레임의 비틀림 강성 평가를 위한 유한요소 모델 개발)

  • Oh Chae-Youn;Moon Il-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.563-569
    • /
    • 2005
  • This paper develops a finite element model of a cabover type large truck. The finite element model is for evaluating torsional stiffness of the frame of the large truck. The torsional test of the frame is conducted in order to validate the developed finite element model. A load cell is used to measure the load applied to the frame. An angle sensor is used to measure the torsional angle. An actuator is used to apply a load to the frame. A vertical upward load and a vertical downward load are applied to the frame in the torsional test. The frame's torsional stiffness is computed with the measured load and torsional angle in the torsional test. The finite element model of the large truck includes cab, deck and payload, suspension, and tire. Cab, deck, and suspension are modeled not to affect the frame's torsional stiffness. The simulation is performed with the developed finite element model for evaluating the frame's torsional stiffness. The simulation results show a very good correlation with the torsional test results in the tendency of changing of the frame's torsional stiffness not only with the direction of the applying load but also with the amount of the applying load. In addition, the simulation results predict the measured torsional stiffness of the frame with about $5{\%}$ error.

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Mechanical Behavior Analysis and Strength Standardization of Paper Angle (종이 앵글의 역학적 거동 분석과 강도 표준화 연구)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Paper angle, environment friendly packaging material, has been mainly used as an edge protector. But, we have perceived its application to package design of heavy product such as strength reinforcement or unit load system (ULS) in the future. Above all, understanding of buckling behavior for angle itself and compression strength and quality standard have to be accomplished for the paper angle to be used for this purpose. The purpose of this study was to elucidate the buckling behavior through theoretical and finite element analysis, and to develop compression strength model by compression test for symetric and asymetric paper angle. Based on the result of theoretical and finite element analysis, increasing rate of buckling of asymmetric paper angle was higher as applied load level was bigger and/or the length of angle was longer than that of symmetric paper angle. Decreasing rate of minimum principal moment of inertia was remarkably increased as the extent of asymmetric angle is bigger, and buckling orientation of angle was open direction near the small web. Increasing rate of maximum compression strength (MCS) for thickness of angle was smaller as the web size was bigger in symmetric angle. MCS of asymmetric angle of $43{\times}57$ and $33{\times}67$ was decreased $15{\sim}18%$ and $65{\sim}78%$, and change of buckling was increased $12{\sim}13%$ and $62{\sim}66%$, respectively.

  • PDF

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.

Structural Safety Evaluation of PBD Composite Perforator's Leader for Soft Ground Improvement (연약지반 개량 PBD 복합천공기 리더의 구조 안전성 평가)

  • Kim, Min-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.894-900
    • /
    • 2018
  • Among the soft ground improvement methods, PBD is the most common construction method because it is cheap and construction is fast. However, if the ground is rigid, additional work is required. In this study, the structural safety, natural vibration, and safety angle of the steel vertical tower structure were evaluated in the development of the PBD composite perforator which can be combined with drilling work and PBD construction. Structural safety was assessed when the wind load of 20 m/s was simultaneously applied to the PBD construction load of 20 tons, the perforating operation of 25 tons, and the wind speed of 50 m/s was applied only to the wind load. The natural frequencies were evaluated up to the sixth mode, and the safety angle was evaluated for static and dynamic safety angles.

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.