• Title/Summary/Keyword: Livestock Excretion

Search Result 57, Processing Time 0.022 seconds

Effect of Nonstarch Polysaccharide-Rich By-Product Diets on Nitrogen Excretion and Nitrogen Losses from Slurry of Growing-Finishing Pigs

  • Canh, T.T.;Verstegen, M.W.A.;Mui, N.B.;Aarnink, A.J.A.;Schrama, J.W.;Van't Klooster, C.E.;Duong, N.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.573-578
    • /
    • 1999
  • An experiment was conducted to investigate the effect of diet for growing-finishing pigs with high level of non-starch polysaccharides (NSP) from by-products on nitrogen excretion and nitrogen losses from slurry during storage. Sixteen commercial crossbred barrows of about 68 kg BW were randomly allotted to one of four diets. The control diet was formulated using tapioca and rice as basal energy sources. In the other diets, tapioca was replaced by either coconut expellar, rice bran or beer by-product. The diets differed mainly in the amount and compostition of NSP. After a 12-day adaptation period, urine and faeces were collected separately in metabolism cages for 9 days. Urine and faeces from the first four days were used to analyse the nitrogen partitioning. Urine and faeces from the last 5 days were mixed as slurry. The slurry was sampled at the end of the collection period and again after 30 days storage, to analyse for nitrogen to calculate the losses. Increasing dietary NSP reduced urinary nitrogen and nitrogen losses from the slurry during storage. The pigs fed the diet based on beer by-product excreted the most nitrogen via faeces and the least nitrogen via urine. Nitrogen losses from slurry of pigs fed the beer by-product were from 34 to 65% lower than from the other three diets. It is concluded that including NSP-rich by-products in the diet of growing-finishing pigs reduces urinary nitrogen excretion and nitrogen losses from slurry during storage.

Effects of Phase Feeding and Sugar Beet Pulp on Growth Performance, Nutrient Digestibility, Blood Urea Nitrogen, Nutrient Excretion and Carcass Characteristics in Finishing Pigs

  • Ko, T.G.;Lee, J.H.;Kim, B.G.;Min, T.S.;Cho, S.B.;Han, In K.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1150-1157
    • /
    • 2004
  • This experiment was conducted to investigate effects of phase feeding and sugar beet pulp (SBP) on growth performance, nutrient digestibility, nitrogen excretion, blood urea nitrogen (BUN) concentration and carcass characteristics in finishing pigs. A total of 128 pigs were allotted at 53.9 kg BW to 8 replicates in a 2$\times$2 factorial arrangement in a randomized complete block (RCB) design. The first factor was phase feeding (2 or 3 phase feeding) and SBP (SBP: 0% or 10%) was the second factor. Ten percent SBP supplement groups showed lower average daily feed intake (ADFI) than 0% SBP supplement groups (p<0.05). However, there were no significant difference in average daily gain (ADG) and feed:gain ratio among treatments during overall experimental period. Nutrient digestibility was not affected by phase feeding or SBP supplementation. Urinary nitrogen excretion in 10% SBP supplement group was lower than that in 0% SBP supplement group (p<0.05) and total nitrogen excretion was lower in SBP supplement group than in the group without SBP. Urinary and total nitrogen were numerically decreased in three phase feeding compared to two phase feeding. The BUN concentration in three phase feeding groups was lower than two phase feeding groups at 47 and 63 day (p<0.05). Consequently, results of this experiment demonstrated that three phase feeding was more acceptable than two phase feeding for finishing pigs. And sugar beet pulp could be supplemented in finishing pig diet for decreasing urinary nitrogen excretion without retardation in growth performance of pigs.

Reduction of Nitrogen and Phosphorus from Livestock Waste A Major Priority for Intensive Animal Production - Review -

  • Yano, F.;Nakajima, T.;Matsuda, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.651-656
    • /
    • 1999
  • In current animal production in Japan, a large surplus of nitrogen and phosphorus is given to animals as their feed which are mostly imported from outside of our own country. Today, an excess of nitrogen and phosphorus from animal manure has been spread out of the area of animal production and the surroundings. These components have become the major reason for eutrophication of ground, surface and inland water. Nutritional studies for the reduction of nitrogen and phosphorus from animal waste has been done by many researchers. The reduction of excess protein in animal feed and the supplementation of deficient essential amino acids to feed have a possibility to increase the biological value of feed and to reduce nitrogen excretion, especially, via urine. The use of phytase activity to degrade phytate and to release utilizable inorganic phosphorus make it possible to cut an excess supply of feed additive inorganic phosphorus and to reduce phosphorus excretion from animal waste.

Nitrogen Dioxide Emission from Livestock Manure Management (가축분뇨로부터 아산화질소 배출량 산출)

  • 전병수;정종원;김태일;유용희;최동윤;곽정훈;박치호;이현정
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This study was conducted to calculate the amount of $N_2O$ emission from livestock manure management in Korea. $N_2O$ is considered a greenhouse gas emitted from livestock manure treatment. In order to calculate $N_2O$ emission, a percentage of nitrogen from livestock manure, livestock manure treatment facilities, and the number of livestock were collected. The amount of annual N excretion from beef cattle, dairy cattle, pigs, laying hen, and broiler were 37.00, 20.42, 12.37, 0.56, and 0.29kg, respectively Calculated $N_2O$ emission in 1990, 2005, 2010, 2015, and 2020 were 3.71, 5.84, 6.07, 6.23, and 6.53Gg, respectively. Increased $N_2O$ percentage in 2005, 2010, 2015, and 2020 compared to 1990 were 57.4, 63.6, 67.9, and 76.0%, respectively.

  • PDF

Automatic NPK Calculation Based on Nutrients of Livestock Manure (ICT 기반 가축분뇨 중 함유 NPK 양분의 정량적 관리기법 연구)

  • Lee, Myunggyu;Kim, Sooryang;Hong, Yousik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.173-179
    • /
    • 2017
  • Advanced countries, animal wastes are produced using bioenergy and methane gas technology. In Korea, many researches are being actively carried out to develop livestock manure as a resource technology rather than a animal waste. However, the production of bio-gas using livestock manure is still in the process of development of functional livestock and compost because of low economic efficiency with livestock manure recycling technology. In this paper, in order to accurately estimate the manure output, It will calculate the manure excretion if you have finished input the number of pigs. In addition, we simulated the fertilization rate of three elements of NPK fertilizer per 100 square meters automatically.

Effect of Inorganic and Organic Trace Mineral Supplementation on the Performance, Carcass Characteristics, and Fecal Mineral Excretion of Phase-fed, Grow-finish Swine

  • Burkett, J.L.;Stalder, K.J.;Powers, W.J.;Bregendahl, K.;Pierce, J.L.;Baas, T.J.;Bailey, T.;Shafer, B.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1279-1287
    • /
    • 2009
  • Concentrated livestock production has led to soil nutrient accumulation concerns. To reduce the environmental impact, it is necessary to understand current recommended livestock feeding practices. Two experiments were conducted to compare the effects of trace mineral supplementation on performance, carcass composition, and fecal mineral excretion of phase-fed, grow-finish pigs. Crossbred pigs (Experiment 1 (Exp. 1), (n = 528); Experiment 2 (Exp. 2), (n = 560)) were housed in totally-slatted, confinement barns, blocked by weight, penned by sex, and randomly assigned to pens at approximately 18 kg BW. Treatments were allocated in a randomized complete block design (12 replicate pens per treatment) with 9 to 12 pigs per pen throughout the grow-finish period. In Exp. 1, the control diet (Io100) contained Cu as $CuSO_{4}$, Fe as $FeSO_{4}$, and Zn (of which 25% was ZnO and 75% was $ZnO_{4}$) at concentrations of 63 and 378 mg/kg, respectively. Treatment 2 (O100) contained supplemental Cu, Fe, and Zn from organic sources (Bioplex, Alltech Inc., Nicholasville, KY) at concentrations of 19, 131, and 91 mg/kg, respectively, which are the commercially recommended dietary inclusion levels for these organic trace minerals. Organic Cu, Fe, and Zn concentrations from O100 were reduced by 25% and 50% to form treatments 3 (O75) and 4 (O50-1), respectively. In Exp. 2, treatment 5 (Io25) contained 25% of the Cu, Fe, and Zn (inorganic sources) concentrations found in Io100. Treatment 6 (O50-2) was identical to the O50-1 diet from Exp. 1. Treatment 7 (O25) contained the experimental microminerals reduced by 75% from concentrations found in O100. Treatment 8 (O0) contained no trace mineral supplementation and served as a negative control for Exp. 2. In Exp. 1, tenth-rib backfat, loin muscle area and ADG did not differ (p>0.05) between treatments. Pigs fed the control diet (Io100) consumed less feed (p<0.01) compared to pigs fed diets containing organic trace minerals, thus, G:F was greater (p = 0.03). In Exp. 2, there were no differences among treatment means for loin muscle area, but pigs fed the reduced organic trace mineral diets consumed less (p<0.05) feed and tended (p = 0.10) to have less tenth-rib backfat compared to pigs fed the reduced inorganic trace mineral diet. Considering that performance and feed intake of pigs was not affected by lower dietary trace mineral inclusion, mineral excretion could be reduced during the grow-finish phase by reducing dietary trace mineral concentration.

Lysine Requirement of Piglets

  • Jin, C.F.;Kim, J.H.;Cho, W.T.;Kwon, K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 1998
  • The experiment was conducted with 120 barrows weaned at 21 days of age to estimate their lysine requirement weaned at 21 days of age when other important amino acids were fortified to get optimal ratio to lysine. The treatments were 1.15% (control), 1.25%, 1.35%, 1.45%, 1.55%, 1.65% total lysine in the diet. Based on the growth performance total lysine requirement of 21-day old pigs appears to be 1.45%. The lowest digestibilities of dry matter and crude fat were found in pigs fed 1.15% total lysine diet and the highest were found in pigs fed 1.65% total lysine diet with no significant differences among treatments. Nitrogen digestibility increased as the total lysine level increased up to 1.35% (p < 0.05) and remained relatively constant beyond 1.35%. However, the best nitrogen digestibility was observed in pigs fed 1.45% total dietary lysine. Gross energy, crude ash and phosphorus digestibilities did not differ due to the increase in total lysine level. The amounts of excreted dry matter and nitrogen differed significantly by the increase in lysine level up to 1.35% (p < 0.05), while phosphorus excretion was not influenced by the lysine level. Dry matter and nitrogen excretion were reduced by 13.6% and 18.4%, respectively, when 1.45% lysine was offered to the pigs compared to the those fed on 1.15% lysine diet. The amino acid digestibilities increased as the total lysine level increased up to 1.45% (p < 0.05), and remained constant beyond 1.45%. The lysine requirement for the pigs weighing 6 to 14 kg seems to be higher than the previous estimates and in order to reduce pollutant excretion the accurate nutrient requirement should be set and applied to the animal.

Effects of Sodium Polyacrylate and Phytase-Supplemented Diet on Performance and Phosphorus Retention in Chicks

  • Yamazaki, M.;Murakami, H.;Ohtsu, H.;Abe, H.;Takemasa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1490-1495
    • /
    • 2010
  • Two experiments were conducted to evaluate the effects of addition of sodium polyacrylate (SPA) to a phytasesupplemented diet on the performance and phosphorus (P) retention of chicks. In experiment 1, chicks were randomly allocated to four dietary treatments which were fed from 7 to 21 days of age: i) basal diet (low nonphytate phosphorus (0.23% NPP)); ii) basal with 250 U/kg diet of phytase; iii) as (ii) with 2.5 g/kg diet of SPA; and iv) as (ii) with 5.0 g/kg diet of SPA. In experiment 2, three replicates, each with three chicks, were fed from 7 to 28 days of age the basal diet (0.23% NPP) with supplementation of phytase (0, 300, 600, 900 U/kg diet) and SPA (0, 2.5 g/kg diet) in a $4{\times}2$ factorial arrangement. In Experiment 1, feed efficiency was improved and excreted P was 10% less with phytase supplementation. However, the addition of SPA did not affect performance or P excretion. Dietary SPA supplementation to the diets showed significantly higher amounts of P retention, and highest values were observed in chicks fed 2.5 g/kg of the SPA-supplemented diet. In Experiment 2, feed efficiency was improved with phytase supplementation, and the addition of SPA showed significant improvement in feed efficiency. Excreted P was significantly lower in chicks fed SPA-supplemented diets, and the retained P coefficient improved with SPA supplementation. In conclusion, the increased transit time of digesta with suitable supplementation levels of SPA may allow phytase activity to be more effective in the degradation of phytate, and improve P retention.

Clinical sign and transmission of foot-and-mouth disease in deer, Review (사슴에서의 구제역 증상과 전파 가능성)

  • Park, Jong-Hyeon;Lee, Kwang-Nyeong;Kim, Su-Mi;Ko, Young-Joon;Lee, Hyang-Sim;Cho, In-Soo
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • Foot-and-mouth disease (FMD) commonly infects cloven-hoofed livestock animals such as cattle, pig, sheep, and goat and its clinical signs are well-known. Besides livestock, FMD can be transmitted among cloven-hoofed animals in the wild. FMD mostly affects livestock animals in farms, but, wild animals are likely to play a pivotal role in spreading the disease due to their way of free living. In the case of deer, the clinical signs of FMD vary widely from subclinical to severe infections. Thus, in some deer species, it may be hard to verify clinical signs of FMD. A deer may carry the virus up to 11 weeks after exposure, shedding the virus during the period. However, deer is not considered as a typical host for persistent infection like buffalo, cattle or sheep. In Korea, small-scale livestock farms which have less than 10 animals make up 63.6% of the entire livestock farms. Considering raising environment in deer farms, it is assumed that the risk of virus excretion and consequent transmission of FMD among deers is relatively lower than other cloven-hoofed animals. However, Sika deer and Elk which are typical deer species in Korea would manifest mild to subclinical symptoms upon FMD infection. Therefore, laboratory testing is necessary to confirm FMD in these animals because of difficulty in verifying clinical signs and the risk of virus shedding during inapparent infection.

Development of a Groundwater Quality Sampling Method for Livestock Excreta Survey (가축분뇨실태조사를 위한 지하수 오염현황조사 지점 선정 방법 개발)

  • Kim, Deok-Woo;Ryu, Hong-Duck;Baek, Unil;Kim, Sunjung;Shin, Dong Seok;Lee, Jae Gwan;Chung, Eu Gene
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.37-54
    • /
    • 2019
  • The groundwater quality through livestock excreta survey based on "Act of the management and use of livestock excreta" was investigated by selecting sampling sites within 1 km of the farmland without considering hydrogeological units. However, these sites can be affected by various pollution sources such as chemical fertilizers and livestock excretions. Additionally, the effects of pollution sources on groundwater quality in the sites cannot be clearly distinguished from naturally occurring backgrounds. In this study, a method was developed to select the sampling sites for groundwater quality through livestock excreta survey in order to understand the effects of pollution sources especially livestock excreta. First, the concentrations of nitrate within the radius of 200 m, 300 m, 500 m and 750 m, respectively, from the farms regarded as pollution sources in hydrogeological units were compared in 2016-2017. All the nitrate concentrations at 200 - 500 m from the farms exceeded a background concentration, 13.3 mg/L. Those at 750 m and the background concentrations measured by the Ministry of Environment were comparable. Therefore, the appropriate radius was suggested as 500 m for livestock excretions survey. In this study, the areas within 500 m from the farms could be considered under the influence of livestock excretions, while those beyond 500 from the pollution sources as background in hydrogeological units. The developed method was validated by applying it to the sites selected based on both administrative divisions and watersheds for livestock excretion survey. The average densities for the developed method were 0.82 and 0.39 points/km2, respectively, which were considered as appropriate levels according to those of the European Environmental Agency.