• Title/Summary/Keyword: Liver CT Dose

Search Result 58, Processing Time 0.027 seconds

Evaluation of Image Quality and dose with the Change of kVp and BMI in the Liver CT (CT 검사 시 관전압과 BMI 변화에 따른 화질 및 피폭평가)

  • Kim, Dong-Hyun;Ko, Sung-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Choi, Seok-Yoon;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.331-338
    • /
    • 2013
  • CT for follow-up visits because of liver disease, body mass index (BMI) and kVp according to the change of the image quality and radiation dose to evaluate for changes. March 2010 to June 2011 at Pusan P University Hospital, abdominal CT scans a patient BMI (Body Mass Index. Less BMI) index was less than 25 in the treatment of subjects had a 48-person Noise and SNR at 100kVp abdominal image is lager than the 120kVp image. CTDI volume value at by the analysis of the radiation dose is 4.47mGy(100kVp) and 9.01mGy(120kVp). So CTDIvol in 100kVp is smaller than CTDIvol in 120kVp(decrease by 44.1%). And, effective dose is 7.1mSv(100kVp) and 12.51mSv(120kVp). So effective dose in 100kVp is smaller than effective dose in 120kVp(decrease by 43%). Evaluation of image quality is that Unacceptable 0 person, Suboptimal 0 person, Adequate 0 person, Good 1 person, Excellent 47 person. In case of repeatly patient, we examinate abdomianl CT scan by using low kVp and body mass index less than 25. We can has good quality image and benefit of low radiation dose.

Effect of Saline Flush on the Enhancement of Vascular and Liver via Saphenous Vein for Abdominal CT in Dogs

  • Kim, Song Yeon;Hwang, Tae Sung;An, Soyon;Hwang, Gunha;Go, Woohyun;Lee, Jong Bong;Lee, Hee Chun
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • The aim of this study was to evaluate the contrast effect if a saline flush following low-volume contrast medium bolus improves vascular and parenchymal enhancement using a saphenous vein in abdominal CT for small animals. Six clinically healthy beagle dogs underwent abdominal contrast-enhanced CT. They were divided into nine groups (each group, n = 6), according to the volume of contrast medium 1, 2, and 3 mL/kg, and volume of the saline solution 0, 5, and 10 mL. Dynamic CT scanning was performed at the hepatic hilum level. The maximum contrast enhancement, time to maximum enhancement, and time to equilibrium phase were calculated from the time attenuation curves. Mean attenuation values for all groups were measured in the aorta, portal vein, and liver. After contrast enhancement, grading of image quality regarding surrounding artifacts and evaluation of the hepatic hilum structures was performed. For comparison of the effect of the contrast material and saline solution doses, differences in mean attenuation values between the contrast medium 2 mL/kg without saline flush group and the remaining groups, and between contrast medium 3 mL/kg without saline flush group and the remaining groups, were analyzed for statistical significance. There were no significant differences between with and without saline flushing at the same contrast medium dose groups. There were no significant differences in peak values between the 3 mL/kg dose of contrast medium alone and the 2 mL/kg dose of contrast medium with saline solution flush. However, there was a significant difference in peak values between the 3 mL/kg dose of the contrast medium without the saline flush group and the 2 mL/kg dose of the contrast medium alone group. Grades of the artifacts were not significantly different in the saline flush regardless of the dose of the contrast medium. Using 2 mL/kg of contrast medium with saline solution flush resulted in similar liver parenchyma attenuation, compared with using 3 mL/kg of contrast medium without saline solution flush. In CT evaluation of hepatic parenchymal diseases, using 2 mL/kg of contrast medium with saline solution flush may yield decreased risk of contrast nephropathy and cost-saving.

Evaluation of CT Number Difference between Radiation Therapeutic CT Simulator and Conventional CT (방사선치료용 CT simulator와 진단용 CT의 구조 차이에 의한 CT number의 비교 평가)

  • Seo, Jeong Min;Rhim, Jae Dong;Kim, Chan Hyeong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.215-219
    • /
    • 2015
  • The purpose in this study is to investigate CT number difference between conventional CT and CT simulator. It shows good correlation in CT number on the muscle, bone, and air. However, in the liver, lungs and water, the low correlation was detected. This result can become the good index for the direction of the distribution of dose difference research between CT equipment for using the computerized radiation therapy planning system.

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT에서의 간암-간 대조 곡선의 Simulation)

  • S.J. Kim;K.H. Lee;J.H. Kim;J.K. Han;B.G. Min
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.173-182
    • /
    • 1999
  • Contrast-enhanced CT has an important role in assessing liver lesions, the optimal protocol to get most effective result is not clear. The mein goal when deciding injention protocol is to optimize lesion detectability with rapid scanning when lesion to liver contrast is maximum. For this purpose, we developed a physiological model of the contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver is achieved in two paths. This dual supply characteristic distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and to second, by portal vein. However, it is assumed that only gepatic artery can supply blood to hepatocellular carcinoma(HCC) compartment, thus, the difference of contrast enhancement is resulted between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using the computer program Matlab, CT contrast-enhancement curves were simulated. The simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with the mean enhancement curves from 24 patients exposed to the same protocols as the simulation. These enhancement curves showed a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and the effects were analyzed. The variables to be considered in the injection protocol were injection rate, dose, and concentration of contrast material. These data may help to optimize scanning protocols for better diagnosis.

  • PDF

Evaluation of Reasonable $^{18}F$-FDG Injected Dose for Maintaining the Image Quality in 3D WB PET/CT (PET/CT 검사에서 영상의 질을 유지하기 위한 적정한 $^{18}F$-FDG 투여량의 평가)

  • Moon, A-Reum;Lee, Hyuk;Kwak, In-Suk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2011
  • Purpose: $^{18}F$-FDG injected dose to the patient is quite different between the recommended dose from manufacturer and the actual dose applied to each of hospitals. injection of inappropriate $^{18}F$-FDG dose may not only increase the exposed dose to patients but also reduce the image quality. we thus evaluated the proper $^{18}F$-FDG injected dose to decrease the exposed dose to patients considering the image quality. Materials And Methods: NEMA Nu2-1994 phantom was filled with $^{18}F$-FDG increasing hot cylinder radioactivity concentration to 1, 3, 5, 7, 9 MBq/kg based on the ratio of 4:1 between the hot cylinder and background activity. after completing the transmission scan using ct, emission scan was acquired in 3D mode for 2 minutes 30 seconds/bed. ROI was set up on hot cylinder and background radioactivity region. after measuring $SUV_{max}$ those regions, then analyzed SNR at the points. clinical experiment has been conducted the object of patients who have came to smc from november 2009 to august 2010, 97 patients without having a hepatic lesions were selected. ROI was set up in the liver and thigh area. after measuring $SUV_{max}$, the image quality was compared following the injected dose. Results: in phantom study, as the injected radioactivity concentration per unit mass was 1, 3, 5, 7, 9 MBq/kg, $SUV_{max}$ was 23.1, 24.1, 24.3, 22.8, 23.6 and SNR was shown 0.48, 0.54, 0.56, 0.55, 0.55. according to increment of the injected dose, $SUV_{max}$ and SNR was increased under 5 MBq/kg but they were decreased over 7 MBq/kg. in case of clinical experiment, as increased the injected radioactivity concentration per unit mass was 4.72, 5.34, 6.16, 7.41, 8.68 MBq/kg, $SUV_{max}$ was 2.68, 2.67, 2.26, 1.88, 1.95 and SNR was shown 0.52, 0.53, 0.46, 0.46, 0.44. if the injected dose exceeds 5 MBq/kg, showed a decrease pattern as phantom study. Conclusion: increasing $^{18}F$-FDG injected dose considered patient's body weight improve image quality within a certain range. if it exceeds the range, it can be reduced image quality due to random and scatter coincidences. this study indicates that the optimal injected dose was 5 MBq/kg per unit mass the injected radioactivity concentration in 3d wb pet/ct.

  • PDF

Radiation dosimetry of 89Zr labeled antibody estimated using the MIRD method and MCNP code

  • Saeideh Izadi Yazdi ;Mahdi Sadeghi ;Elham Saeedzadeh ;Mostafa Jalilifar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1265-1268
    • /
    • 2023
  • One important issue in using radiopharmaceuticals as therapeutic and imaging agents is predicting different organ absorbed dose following their injection. The present study aims at extrapolating dosimetry estimates to a female phantom from the animal data of 89Zr radionuclide accumulation using the Sparks-Idogan relationship. The absorbed dose of 89Zr radionuclide in different organs of the human body was calculated based on its distribution data in mice using both MIRD method and the MCNP simulation code. In this study, breasts, liver, heart wall, stomach, kidneys, lungs and spleen were considered as source and target organs. The highest and the lowest absorbed doses were respectively delivered to the liver (4.00E-02 and 3.43E-02 mGy/MBq) and the stomach (1.83E-03 and 1.66E-03 mGy/MBq). Moreover, there was a good agreement between the results obtained from both MIRD and MCNP methods. Therefore, according to the dosimetry results, [89Zr] DFO-CR011-PET/CT seems to be a suitable for diagnostic imaging of the breast anomalies for CDX-011 targeting gpNMB in patients with TNBC in the future.

Evaluation on Usefulness of Applying Body-fix to Four Dimensional Radiation Therapy (4차원 방사선 치료시 Body Fix의 유용성 평가)

  • Kim, Young-Jae;Jang, Young-Ill;Ji, Yeon-Sang;Han, Jae-Bok;Choi, Nam-Gil;Jang, Seong-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.419-426
    • /
    • 2013
  • This study investigates the usefulness of body fix in 4DRT on Liver cancer trying to find tumor tissue's volume and located variations, absorbed dose on tumor and normal tissues. Test subjects 23 patients were agreed these test. These patient's have a 4 dimensional CT scan. We make an acquisition on patients CT image by two types -put on the body fix or not-. Average tumor volume reduced by 0.17% on GTV and 3.2% on CTV and PTV. Tumor's variation reduces 29.8%(anterior and posterior, AP) and 5.31% (upper and lower, UL). The absorbed tumor doses under put on the body fix was a little higher(1.3%) than other. Normal tissues'(normal liver, stomach, Rt. kidney, spinal cord) absorbed dose could be reduced approximately 5%. Therefore, using body fix on 4DRT for liver cancer patient is considered effectively.

The Study of Patient Dose Comparison on Liver Computed Tomography : For 4 Equipment Vendors (간 전산화단층촬영 시 환자 선량 비교 연구 : 4개 장비회사를 대상으로)

  • Joo, Young-Cheol;Lim, Chung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.215-216
    • /
    • 2013
  • 본 연구는 간 CT검사를 받은 환자의 선량 및 일반적 정보를 이용하여 후향적으로 진행된 연구로서, 우리나라에서 사용 빈도가 높은 4개사의 CT장비에서 각 장비별로 간 CT검사 시 환자가 받는 평균유효선량의 차이를 알아보고, 성별, 연령, 신장, 체중과 같은 환자의 특성에 따라 장비사별 환자선량을 비교 분석을 통해 임상에서 각자의 장비를 이용하여 방사선사가 간 CT검사를 진행하거나 새로운 검사조건 설정 시 환자선량 감소를 위해 고려해야 할 사항을 제시하는데 목적이 있다.

  • PDF

Image-based Absorbed Dosimetry of Radioisotope (영상기반 방사성동위원소 흡수선량 평가)

  • Park, Yong Sung;Lee, Yong Jin;Kim, Wook;Ji, Young Hoon;Kim, Kum Bae;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.86-92
    • /
    • 2016
  • An absorbed dose calculation method using a digital phantom is implemented in normal organs. This method cannot be employed for calculating the absorbed dose of tumor. In this study, we measure the S-value for calculating the absorbed dose of each organ and tumor. We inject a radioisotope into a torso phantom and perform Monte Carlo simulation based on the CT data. The torso phantom has lung, liver, spinal, cylinder, and tumor simulated using a spherical phantom. The radioactivity of the actual absorbed dose is measured using the injected dose of the radioisotope, which is Cu-64 73.85 MBq, and detected using a glass dosimeter in the torso phantom. To perform the Monte Carlo simulation, the information on each organ and tumor acquired using the PET/CT and CT data provides anatomical information. The anatomical information is offered above mean value and manually segmented for each organ and tumor. The residence time of the radioisotope in each organ and tumor is calculated using the time activity curve of Cu-64 radioactivity. The S-values of each organ and tumor are calculated based on the Monte Carlo simulation data using the spatial coordinate, voxel size, and density information. The absorbed dose is evaluated using that obtained through the Monte Carlo simulation and the S-value and the residence time in each organ and tumor. The absorbed dose in liver, tumor1, and tumor2 is 4.52E-02, 4.61E-02, and 5.98E-02 mGy/MBq, respectively. The difference in the absorbed dose measured using the glass dosimeter and that obtained through the Monte Carlo simulation data is within 12.3%. The result of this study is that the absorbed dose obtained using an image can evaluate each difference region and size of a region of interest.

The Effect of Using Two Different Type of Dose Calibrators on In Vivo Standard Uptake Value of FDG PET (FDG 사용 시 Dose Calibrator에 따른 SUV에 미치는 영향)

  • Park, Young-Jae;Bang, Seong-Ae;Lee, Seung-Min;Kim, Sang-Un;Ko, Gil-Man;Lee, Kyung-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.115-121
    • /
    • 2010
  • Purpose: The purpose of this study is to measure F-18 FDG with two different types of dose calibrator measuring radionuclide and radioactivity and investigate the effect of F-18 FDG on SUV (Standard Uptake Value) in human body. Materials and Methods: Two different dose calibrators used in this study are CRC-15 Dual PET (Capintec) and CRC-15R (Capintec). Inject 1 mL, 2 mL, 3 mL of F-18 FDG into three 2 mL syringes, respectively, and measure initial radioactivity from each dose calibrator. Then measure and record radioactivity at 30 minute interval for 270 minutes. According to the initial radioactivity, linearity between decay factor driven from radioactive decay formula and the values measured by dose calibrator have been analyzed by simple linear regression. Fine linear regression line optimizing values measured with CRC-15 through regression analysis on the basis of the volume of which the measured value is close to the most ideal one in CRC-15 Dual PET. Create ROI on lung, liver, and region part of 50 persons who has taken PET/CT test, applying values from linear regression equation, and find SUV. We have also performed paired t-test to examine statistically significant difference in the radioactivity measured with CRC-15 Dual PET, CRC-15R and its SUV. Results: Regression analysis of radioactivity measured with CRC-15 Dual PET and CRC-15R shows results as follows: in the case 1 mL, the r statistic representing correlation was 0.9999 and linear regression equation was y=1.0345x+0.2601; in 2 mL case, r=0.9999, linear regression equation y=1.0226x+0.1669; in 3 mL case, r=0.9999, linear regression equation y=1.0094x+0.1577. Based on the linear regression equation from each volume, t-test results show significant difference in SUV of ROI in lung, liver, region part in all three case. P-values in each case are as follows: in 1 mL case, lung, liver and region (p<0.0001); in 2 mL case, lung (p<0.002), liver and region (p<0.0001); in 3 mL case, lung (p<0.044), liver and region (p<0.0001). Conclusion: Radioactivity measured with CRC-15 Dual PET, CRC-15R, dose calibrator for F-18 FDG test, do not show difference correlation, while these values infer that SUV has significant differences in the aspect of uptake in human body. Therefore, it is necessary to consider the difference of SUV in human body when using these dose calibrator.

  • PDF