• Title/Summary/Keyword: Lithium ions

Search Result 166, Processing Time 0.023 seconds

Separation of Ni(II), Co(II), Mn(II), and Si(IV) from Synthetic Sulfate and Chloride Solutions by Ion Exchange (황산과 염산 합성용액에서 이온교환에 의한 니켈(II), 코발트(II), 망간(II) 및 실리케이트(IV)의 분리)

  • Nguyen, Thi Thu Huong;Wen, Jiangxian;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Reduction smelting of spent lithium-ion batteries at high temperature produces metallic alloys. Following solvent extraction of the leaching solutions of these metallic alloys with either sulfuric or hydrochloric acid, the raffinate is found to contain Ni(II), Co(II), Mn(II), and Si(IV). In this study, two cationic exchange resins (Diphonix and P204) were employed to investigate the loading behavior of these ions from synthetic sulfate and chloride solutions. Experimental results showed that Ni(II), Co(II), and Mn(II) could be selectively loaded onto the Diphonix resin from a sulfate solution of pH 3.0. With a chloride solution of pH 6.0, Mn(II) was selectively loaded onto the P204 resin, leaving Ni(II) and Si(IV) in the effluent. Elution experiments with H2SO4 and/or HCl resulted in the complete recovery of metal ions from the loaded resin.

Single-Crystal Structures of Li+-exchanged Zeolite X (FAU, Si/Al = 1.09) from Aqueous Solution Depends on Ion-exchange Temperatures at 293 and 333 K

  • Kim, Hu-Sik;Ko, Seong-Oon;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3303-3310
    • /
    • 2012
  • Two single crystals of fully dehydrated partially $Li^+$-exchanged zeolite X were prepared by the exchange of Na-X, $Na_{92}Si_{100}Al_{92}O_{384}$ (Si/Al = 1.09), with $Li^+$ using aqueous 0.1 M $LiNO_3$ at 293 (crystal 1) and 333 K(crystal 2), followed by vacuum dehydration at 623 K and $1{\times}10^{-6}$ Torr for 2 days. Their structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd{\overline{3}}$ at 100(1) K. Their structures were refined using all intensities to the final error indices (using the 1281 and 883 reflections for which ($F_o$ > $4{\sigma}(F_o)$) $R_1/R_2$ = 0.075/0.244 and 0.074/0.223 for crystals 1 and 2, respectively. Their compositions are seen to be ${\mid}Li_{86}Na_6{\mid}[Si_{100}Al_{92}O_{384}]$-FAU and ${\mid}Li_{87}Na_5{\mid}[Si_{100}Al_{92}O_{384}]$-FAU, respectively. In crystal 1, 17 $Li^+$ ions per unit cell are at site I', 15 another site I', 30 at site II, and the remaining 16 at site III; 2 $Na^+$ ions are at site II and the remaining 4 at site III'. In crystal 2, 32 and 30 $Li^+$ ions per unit cell fill sites I' and II, respectively, and the remaining 25 at site III'; 2 and 3 $Na^+$ ions are found at sites II and III', respectively. The extent of $Li^+$ exchange increases slightly with increasing ion exchange temperature from 93% to 95%.

Li+-exchanged Zeolites X and Y (FAU) from Undried Formamide Solution

  • Kim, Hu Sik;Park, Jong Sam;Kim, Jeong Jin;Suh, Jeong Min;Lim, Woo Taik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.260-269
    • /
    • 2013
  • Two single-crystals of fully dehydrated, partially $Li^+$-exchanged zeolites X (Si/Al = 1.09, crystal 1) and Y (Si/Al = 1.56, crystal 2), were prepared by flow method using 0.1 M $LiNO_3$ at 393 K for 48 h, respectively, followed by vacuum dehydration at 673 K and $1{\times}10^{-6}$ Torr. Their structures were determined by single-crystal X-ray diffraction techniques in the cubic space group $Fd\bar{3}$ and $Fd\bar{3}m$ at 100(1) K for crystals 1 and 2, respectively. They were refined to the final error indices $R_1/wR_2$ = 0.065/0.211 and 0.043/0.169 for crystals 1 and 2, respectively. In crystal 1, about 53 $Li^+$ ions per unit cell are found at three distinct positions; 9 at site I', 19 at another site I', and the remaining 25 at site II. The residual 25 $Na^+$ ions occupy three equipoints; 2 are at site I, 7 at site II, and 16 at site III'. In crystal 2, about 31 $Li^+$ ions per unit cell occupy sites I' and II with occupancies at 22 and 9, respectively; 3, 4, 23, and 3 $Na^+$ ions are found at sites I, I', II, and III', respectively. The extent of $Li^+$ ion exchange into zeolite X (crystal 1) is higher than that of zeolite Y (crystal 2), ca. 73% and 56% in crystals 1 and 2, respectively.

Influence of Lithium Ions on the Ion-coordinating Ruthenium Sensitizers for Nanocrystalline Dye-sensitized Solar Cells

  • Cho, Na-Ra;Lee, Chi-Woo;Cho, Dae-Won;Kang, Sang-Ook;Ko, Jae-Jung;Nazeeruddin, Mohammad K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3031-3038
    • /
    • 2011
  • Ion-coordinating ruthenium complexes [cis-Ru(dcbpy)(L)(NCS)$_2$, where dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 1,4,7,10-tetraoxa-13-azacyclopentadecane, JK-121, or bis(2-(2-methoxy-ethoxy)ethyl) amine, JK-122] have been synthesized and characterized using $^1H$ NMR, Fourier transform IR, UV/vis spectroscopy, and cyclic voltammetry. The effect of $Li^+$ in the electrolyte on the photovoltaic performance was investigated. With the stepwise addition of $Li^+$ to a liquid electrolyte, the device shows significant increase in the photo-current density, but a small decrease in the open circuit voltage. The solar cell with a hole conductor, the addition of $Li^+$ resulted in a 30% improvement in efficiency. The JK-121 sensitized cells in the liquid and solid-state electrolyte give power conversion efficiencies of 6.95% and 2.59%, respectively, under the simulated sunlight.

The Holding Characteristics of the Glass Filter Separators of Molten Salt Electrolyte for Thermal Batteries (열전지용 용융염 전해질의 유리필터분리판의 담지특성)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Huh, Seung-Hun;Shin, Dong-Geun;Kim, Hyoun-Ee;Cheong, Hae-Won;Cho, Sung-Baek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.464-471
    • /
    • 2008
  • The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten salt. Ceramic fibers, especially fibrous commercial glass filters were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. During the infiltration, ions of $Li^+$ and $F^-$ in the molten salts were reacted with the glass fiber and caused to be weaken the fiber strength.

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1965-1968
    • /
    • 2008
  • The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Effect of Counter Anions on Solid Electrolyte Interphase Formation on Graphite Electrodes in Propylene Carbonate-based Electrolyte Solutions

  • Song, Hee-Youb;Kim, Seong In;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Herein, the effect of counter anions on the formation of a solid electrolyte interphase (SEI) in a propylene carbonate (PC)-based electrolyte solution was investigated. Although the reversible capacities were different, reversible intercalation and de-intercalation of lithium ions occurred in the graphite negative electrode in the PC-based electrolyte solutions containing 1 M $LiClO_4$, $LiPF_6$, $LiBF_4$, and $LiCF_3SO_3$ at low temperature ($-15^{\circ}C$). This indicated that the surface films acted as an effective SEI to suppress further co-intercalation and decomposition reactions at low temperature. However, the SEIs formed at the low temperature were unstable in 1 M $LiPF_6$ and $LiBF_4/PC$ at room temperature ($25^{\circ}C$). On the other hand, increasing reversible capacity was confirmed in the case of $LiCF_3SO_3/PC$ at room temperature, because the SEI formed at the low temperature was still maintained. These results suggest that counter anions are an important factor to consider for the formation of effective SEIs in PC-based electrolyte solutions.

Conduction Mechanism of Charge Carriers in Electrodes and Design Factors for the Improvement of Charge Conduction in Li-ion Batteries

  • Akhtar, Sophia;Lee, Wontae;Kim, Minji;Park, Min-Sik;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • In-depth knowledge of electrode processes is crucial for determining the electrochemical performance of lithium-ion batteries (LIBs). In particular, the conduction mechanisms of charged species in the electrodes, such as lithium ions (Li+) and electrons, are directly correlated with the performance of the battery because the overall reaction is dependent on the charge transport behavior in the electrodes. Therefore, it is necessary to understand the different electrochemical processes occurring in electrodes in order to elucidate the charge conduction phenomenon. Thus, it is essential to conduct fundamental studies on electrochemical processes to resolve the technical challenges and issues arising during the ionic and electronic conduction. Furthermore, it is also necessary to understand the transport of charged species as well as the predominant factors affecting their transport in electrodes. Based on such in-depth studies, potential approaches can be introduced to enhance the mobility of charged entities, thereby achieving superior battery performances. A clear understanding of the conduction mechanism inside electrodes can help overcome challenges associated with the rapid movement of charged species and provide a practical guideline for the development of advanced materials suitable for high-performance LIBs.

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae;Lee, Seon-Jin;Kim, Hae-In;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.