• Title/Summary/Keyword: Lithium disilicate ceramic

Search Result 71, Processing Time 0.031 seconds

MECHANICAL PROPERTIES OF REUSED LITHIUM DISILICATE GLASS-CERAMIC OF IPS EMPRESS 2 SYSTEM

  • Oh Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2002
  • This investigation was designed to estimate the biaxial flexure strength and fracture toughness of lithium disilicate glass-ceramics of IPS Empress 2 system pressed with as-received ingots and their sprue buttons. Two groups of the lithium disilicate glass-ceramics were prepared as follows: group 1 is ingot-pressed group; group 2 is sprue button-pressed group. A ball-on-three-ball test was used to determine biaxial flexure strength (BFS) of disks in wet environment. Scanning electron microscopy(SEM) analysis was conducted to observe the microstructure of the ceramics. Unpaired t-test showed that there were no differences in the mean biaxial Hem strength (BFS) and KIC values between group 1 and 2 (p > 0.05). Two groups showed similar values in the KIC and the strength at 5% failure probability. The SEM micrographs of the IPS Empress 2 glass-ceramic showed a closely packed, multi-directionally interlocking pattern of numerous lithium disilicate crystals protruding from the glass matrix. The lithium orthophosphate crystals could not be observed on the fracture surface etched. There was no a marked difference of the microstructure between group 1 and 2. Although there were no tests including color stability, casting accuracy, etc., the results of this study implied that we could reuse the sprue button of the pressed lithium disilicate glass-ceramic of IPS Empress 2 system.

Effect of Provisional Restorative and Filling Materials on Bond Strength of Adhesive Resin Cement between Lithium Disilicate Glass-Ceramic and Dentin (Lithium Disilicate Glass-ceramic과 상아질 간의 접착성 레진 시멘트의 결합강도에 대한 임시 수복재와 임시 충전재의 영향)

  • Oh, Sang-Chun;Sim, Hun-Bo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.359-365
    • /
    • 2013
  • The aim of this study was to evaluate the effect of temporary restorative and filling material on bonding strength between lithium disilicate glass-ceramic and dentin. 60 extracted human molars were cross-sectioned at occlusal third and were embedded into self-cure acrylic resin. Then the teeth were randomly divided into four groups of 15 each. Lithium disilicate glass-ceramic is cemented to dentin as follows: after no any application of the provisional materials (Group A), after application of ALIKETM (GC America Inc.)(Group B), after application of Luxatemp$^{(R)}$ Automix plus (DMG, Germany)(Group C), after application of Fermit$^{(R)}$ (Ivoclar Vivadent, Leichtenstein)(Group D). After the specimens were stored in distilled water for 24 hours, the shear bond strength of the specimens were measured using UTM (Zwick 1456 41, Zwick, Germany) at a crosshead speed of 1mm/min. The data were analysed by one-way ANOVA and Tukey HSD tests. There were no statistically significant differences of bond strength among the groups. Fracture type was showed mixed type of adhesive and cohesive fracture in most of specimens. Within the limitation of this study, bond strength of adhesive resin cement between lithium disilicate glass-ceramic and dentin was not affected by provisional restorative and filling materials.

Effect of Various Oxides on Crystallization of Lithium Silicate Glasses (다양한 산화물들이 리튬규산염 유리의 결정화에 미치는 영향)

  • Kim, Chul-Min;Lim, Hyung-Bong;Kim, Youg-Su;Kim, Se-Hoon;Oh, Kyung-Sik;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.269-277
    • /
    • 2011
  • Glass-ceramics based on lithium disilicate($Li_2Si_2O_5$) are prepared by heat-treatment of glasses in a system of $SiO_2-Li_2O-K_2O-Al_2O_3$ with different compositions. The crystallization heat-treatment was conducted at the temperature range of $700{\sim}900^{\circ}C$ and samples were analyzed by XRD and SEM. Mechanical properties were determined by a Vicker's hardness and 4 point bending strength. When $SiO_2/Li_2O$ ratio increased, cristobalite and tridymite crystals showed more predominate than lithium disilicate crystals. Increase in $Al_2O_3$ contents in the glass suppressed crystallzation of lithium disilicate crystals. Increase in ZnO, $B_2O_3$ contents in the glass decreased crystallization temperature of lithium disilicate crystals, and increased mechanical properties because of the reduction of the lithium disilicate crystal size.

Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

  • Jeong, II-Do;Kim, Woong-Chul;Park, Jinyoung;Kim, Chong-Myeong;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.252-256
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (${\alpha}=.05$). RESULTS. The RMS value of lithium disilicate crown was $29.2\;(4.1){\mu}m$ and $17.6\;(5.5){\mu}m$ on the outer and inner surfaces, respectively, whereas these values were $18.6\;(2.0){\mu}m$ and $20.6\;(5.1){\mu}m$ for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.

Comparison of Shear Bonding Strength of Laminate Veneer by Lithium Disilicate Ceramics and Surface Treatment Methods (리튬디실리케이트 세라믹과 표면처리방법에 따른 라미네이트 베니어의 전단결합강도 비교)

  • Park, Sang-Joon;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.177-185
    • /
    • 2019
  • Purpose: This study was to investigate the effect of three different surface treatments on the shear bond strength of lithium disilicate ceramics to enamel. Methods: Totally 60 lithium disilicate ceramic disc specimens were fabricated with IPS e.max press (Ivoclar Vivadent, Schaan, Liechtenstein) and Mazic Claro (Vericom, Korea). 30 specimens in each lithium disilicate ceramic were assigned to 3 groups of the each following surface treatment: 1) $50{\mu}m$ airborne particle abrasion+silane, 2) 9.5% hydroflouric acid etching (HF)+silane, 3) $50{\mu}m$ airborne particle abrasion+9.5% HF+silane. Lithium disilicate ceramic surfaces after surface treatments were AFM examined. The shear bond strength was measured in a universal testing machine at 0.5mm/min crosshead speed. All data were analyzed using a two-way ANOVA and Tukey's test(${\alpha}=0.05$). Results: The mean surface roughness of lithium disilicate ceramics ranged from $0.178{\mu}m$ to $0.441{\mu}m$. The mean shear bond strengths ranged from $23.81{\pm}2.78MPa$ to $33.99{\pm}4.85MPa$. Conclusion: 1. Mazic Claro showed higher shear bond strength than IPS e.max press at 3 different surface treatments, and no statistically significant was observed. 2. The shear bond strength of IPS e.max press was strongly enhanced as surface treated with $50{\mu}m$ airborne particle abrasion and 9.5% hydroflouric acid etching. And there was no statistical significance at the shear bond strength of Mazic Claro with surface treatments.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

Wear of primary teeth caused by opposed all-ceramic or stainless steel crowns

  • Choi, Jae-Won;Bae, Ik-Hyun;Noh, Tae-Hwan;Ju, Sung-Won;Lee, Tae-Kyoung;Ahn, Jin-Soo;Jeong, Tae-Sung;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • PURPOSE. This study was conducted to evaluate the effects of full-coverage all-ceramic zirconia, lithium disilicate glass-ceramic, leucite glass-ceramic, or stainless steel crowns on antagonistic primary tooth wear. MATERIALS AND METHODS. There were four study groups: the stainless steel (Steel) group, the leucite glass-ceramic (Leucite) group, the lithium disilicate glass-ceramic (Lithium) group, and the monolithic zirconia (Zirconia) group. Ten flat crown specimens were prepared per group; opposing teeth were prepared using primary canines. A wear test was conducted over 100,000 chewing cycles using a dual-axis chewing simulator and a 50 N masticating force, and wear losses of antagonistic teeth and restorative materials were calculated using a three-dimensional profiling system and an electronic scale, respectively. Statistical significance was determined using One-way ANOVA and Tukey's test (P<.05). RESULTS. The Leucite group ($2.670{\pm}1.471mm^3$) showed the greatest amount of antagonist tooth wear, followed by in decreasing order by the Lithium ($2.042{\pm}0.696mm^3$), Zirconia ($1.426{\pm}0.477mm^3$), and Steel groups ($0.397{\pm}0.192mm^3$). Mean volume losses in the Leucite and Lithium groups were significantly greater than in the Steel group (P<.05). No significant difference was observed between mean volume losses in the Zirconia and Steel groups (P>.05). CONCLUSION. Leucite glass-ceramic and lithium disilicate glass-ceramic cause more primary tooth wear than stainless steel or zirconia.

Adhesion between heat-pressed lithium disilicate veneer and zirconia framework: Shear bond strength evaluation (열가압 리튬 디실리케이트 전장도재와 지르코니아 하부구조의 전단결합강도 평가)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.335-341
    • /
    • 2020
  • This study examined the shear bond strength between the zirconia core and pressed lithium disilicate veneering ceramics. The Schmitz-Schulmeyer test method was used to investigate the core-veneer shear bond strength of industrially manufactured zirconia core ceramic (Zirtooth, HASS, Gangneung, Korea) and pressed veneer ceramic (IPS e.max Zirpress, Vita PM9, GC Initial IQ, HASS Rosetta SM) (N=40). Data were statistically analyzed using one-way ANOVA and Tukey's test (a=0.05). The fractured surfaces of the specimens were examined to determine the failure pattern using a digital microscope. The mean ± SD shear bond strength in MPa were 16.69±3.11, 14.21±3.63, 11.17±2.92, and 27.90±5.71 for IPS e.max Zirpress, VITA PM9, GC Initial IQ, and HASS Rosetta SM, respectively. The average shear bond strength was largest for HASS Rosetta SM, followed by IPS e.max Zirpress, Vita PM9, and GC Initial IQ(p<0.05). The digital microscopy examination of the fracture surface showed adhesive and cohesive failure in pressed lithium disilicate veneering ceramics. The use of lithium disilicate veneer ceramic produced a significantly higher shear bond strength.

Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown

  • Ji, Min-Kyung;Park, Ji-Hee;Park, Sang-Won;Yun, Kwi-Dug;Oh, Gye-Jeong;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • PURPOSE. This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. MATERIALS AND METHODS. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau$^{(R)}$Zirconia and ZENOSTAR$^{(R)}$ZR translucent) and lithium disilicate glass ceramic (IPS e.max$^{(R)}$press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. RESULTS. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) (P<.05). Both fabrication systems and finish line configurations significantly influenced the absolute marginal discrepancy (P<.05). CONCLUSION. The lithium disilicate glass ceramic crown (IPS e.max$^{(R)}$press) had significantly smaller marginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR$^{(R)}$ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau$^{(R)}$Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max$^{(R)}$press) had overextended margins.

Evaluation of strength according to surface abrasion of lithium disilicate glass ceramic by 3-point bending strength test (3점 굽힘강도 시험을 통한 Lithium disilicate glass ceramic의 표면 연마 정도에 따른 강도 평가)

  • Lee, Ha-Na;Kim, Eo-Bin;Kang, Seen-Young;Lee, Kyung-Eun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of lithium disilicate glass ceramic polishing on the strength of the final prosthesis. Methods: Fourteen lithium disilicate glass ceramic specimens were prepared. These were randomly divided into two groups of seven(LPG: low polishing group, HPG: high polishing group). In LPG, SiC paper was sequentially polished using 300, 600, 800, 1000 grit, and the specifications of the test piece were adjusted. HPG was sequentially polished using 300, 600, 800, 1000, 1200, 1500, and 2000 grit. Two groups of specimens are executed 3- point bending test. Using the statistical program SPSS 22.0, the average values of the strengths of the two groups were compared in the Mann-Whiteney test. The significance level was set at 0.05. Results: The mean strength value of HPG was measured at $307.14{\pm}23.28MPa$ significantly higher than LPG(p<0.001). Conclusion : The final polishing of the prosthesis is aesthetically important but has proven to play an important role in the flexural strength, early fracture, and prolongation of the prosthesis.