• Title/Summary/Keyword: Liquid simulation

Search Result 982, Processing Time 0.034 seconds

The effects of LNG-tank sloshing on the global motions of FLNG system

  • Hu, Zhi-Qiang;Wang, Shu-Ya;Chen, Gang;Chai, Shu-Hong;Jin, Yu-Ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.114-125
    • /
    • 2017
  • This paper addresses a study of inner-tank sloshing effect on motion responses of a Floating Liquefied Natural Gas (FLNG) system, through experimental analysis and numerical modeling. To investigate hydrodynamic characteristics of FLNG under the conditions of with and without LNG-tank sloshing, a series of numerical simulations were carried out using potential flow solver SESAM. To validate the numerical simulations, model tests on the FLNG system was conducted in both liquid and solid ballast conditions with 75% tank filling level in height. Good correlations were observed between the measured and predicted results, proving the feasibility of the numerical modeling technique. On the verified numerical model, Response Amplitude Operators (RAOs) of the FLNG with 25% and 50% tank filling levels were calculated in six degrees of freedom. The influence of tank sloshing with varying tank filling levels on the RAOs has been presented and analyzed. The results showed that LNG-tank sloshing has a noticeable impact on the roll motion response of the FLNG and a moderate tank filling level is less helpful in reducing the roll motion response.

Analysis of Unsteady Cavitating Flows in Fuel Injection Nozzle of Piezo-driven Injector by Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조 인젝터의 노즐 내부 비정상 캐비테이션 유동해석)

  • Lee, Jin-Wook;Min, Kyung-Duk;Kang, Kern-Yong;Gavaises, M.;Arcoumanis, C.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.38-45
    • /
    • 2004
  • This study describes the analysis results of unsteady cavitating flows behavior inside nozzle of the prototype piezo-driven injector. This piezo-driven injector has been recognised as one of the next generation diesel injector due to a higher driven efficiency than the conventional solenoid-driven injector. The three dimensional geometry model along the central cross-section regarding of one injection hole has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. We could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle

  • PDF

Effect of Asymmetric Line Heating in SOI Lamp ZMR (Lamp ZMR에 의한 SOI에서 비대칭 선형가열의 효과)

  • 반효동;이시우;임인곤;주승기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1992
  • In Zone Melting Recrystallization(ZMR) of SOl structure, thin silicon films have been recrystallized by artificial control of beam intensity profile which was obtained by tilting of upper elliptical reflector. Temperature profiles and gradients near solidification interface were calculated by numerical simulation for analysis of asymmetric line heating effect. The larger the tilting angle of the upper reflector, the larger the degree of supercooling at liquid and the interdefect spacing in thin silicon films. Major defects were continuous subgrainboundaries. Isolated threading dislocations were observed in the case of the film having low defect density. We have found that the thin silicon films were recrystallized into (100) textured single crystals by cross-sectional TEM and thin film X-ray diffraction analysis.

  • PDF

Flow Characteristics of Swirl-Coaxial Injectors Using ANSYS FLUENT (ANSYS FLUENT를 이용한 동축 와류형 분사기 유동특성 연구)

  • Lee, Bom;Yoon, Wonjae;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.699-703
    • /
    • 2017
  • Numerical simulations of closed-type and open-type single injectors were conducted to investigate the flow characteristics of a swirl-coaxial injector used in a liquid rocket engine. Numerical analysis was conducted using a commercial program ANSYS FLUENT. The injectors has three models with different recess length. Numerical analysis was conducted to investigate the variation of the flow characteristics of the injector when the flow condition were changed. It was also compare and analyzed with experimental results. The results obtained from the numerical simulation show that the difference between the inlet pressure and the discharge coefficient is not significant.

  • PDF

Cavitating Flow Analysis of Multistage Centrifugal Pump (다단 원심펌프의 공동현상 유동해석)

  • Rakibuzzaman, Rakibuzzaman;Suh, Sang-Ho;Kim, Hyoung-Ho;Cho, Min-Tae;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • The purpose of this study is to investigate cavitating flow of the multistage centrifugal pump. Cavitation is observed in the impeller leading edge and trailing edge of the suction area. Head coefficients are measured under different flow operating conditions. The Rayleigh-Plesset cavitation model is adapted to predict the occurrence of cavitation in the pump. The two-phase gas-liquid homogeneous CFD method is used to analyze the centrifugal pump performances with two equation transport turbulence model. The simulations are carried out with three different flow coefficients such as 0.103, 0.128 and 0.154. The occurrence of cavitation described according to water vapor volume fraction. The head versus NPSH (Net Positive Suction Head) also measured using different flow coefficients. Development of cavitation in the centrifugal pump impellerI is discussed. It is showed that the simulation represents the head drop about 3%.

Optimum Condition of HPLC by HCI Program (HCI 프로그램을 이용한 HPLC의 최적화 조건)

  • Jin, Chun Hua;Lee, Ju Weon;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.555-562
    • /
    • 2006
  • Recently, liquid chromatography (LC) has been used more frequently to separate drugs and natural substances. Especially, to selection of the solutes from the products, the operation condition of analytical chromatography should be necessarily determined. So accurate computer modeling and simulation of chromatographic performances has become a necessary part of the development and design of processes. High-Purity Separation Lab. Inha University developed the resulting HCI software for the purpose of the optimization of chromatographic performances. The HCI program was utilized to find the optimum operating condition more accurately and rapidly, reducing the number of many possible experiments. The elution profiles were calculated by the plate theory based on the three retention mechanism of capacity factor.

Polarity-Balanced Driving to Reduce $V_{TH}$ Shift in a-Si for Active-Matrix OLEDs (문턱전압 열화를 최소화하는 비정질 실리콘 TFT 유기 EL 용 화소 회로)

  • Lee, Hye-Jin;You, Bong-Hyun;Lee, Jae-Hoon;Nam, Woo-Jin;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.20-22
    • /
    • 2004
  • 유기 EL(Organic Light Emitting diode : OLED)은 자체발광 소자로서 액정 디스플레이(Liquid Crystal Display)에 비해 빠른 응답속도, 넓은 시야각 등의 뛰어난 화질 표현이 가능하다. 구동 박막 트랜지스터(TFT)의 전류가 OLED의 휘도를 결정하므로, 고품질의 영상을 위해 미세한 TFT 전류 조절 능력이 매우 중요하다. 비정질 실리콘(a-Si) TFT는 그레인 구조를 갖는 다결정 실리콘(poly-Si) TFT에 비해 균일한 전기적 특성을 나타내지만, 장시간 구동에 따른 문턱전압의 열화가 발생한다. 본 논문에서는 상기의 문제점을 최소화하기 위하여 positive bias에 의한 열화를 negative bias로 어닐링하는 구동방법을 제안하였다. 본 회로는 2개의 게이트 선택 신호와 6개의 a-Si TFT로 이루어져 있다. 실험 결과를 통해 추출된 소자 parameter를 바탕으로 제안된 회로의 simulation을 수행 및 검증하였다. 본 회로는 a-Si TFT에서 발생하는 문턱전압 열화 등의 신뢰성 문제를 감소시킨다.

  • PDF

A Pesticide Residue Risk Assessment from Agricultural Land Using GIS

  • Lee, Ju-Young;Krishina, Ganeshy;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2008
  • Water quality contamination issues are of critical concern to human health, whilst pesticide release generated from irrigated land should be considered for protecting natural habitats and human health. This paper suggests new method for evaluation and analysis using the GIS technique based on integrated spatial modeling framework. The pesticide use on irrigated land is a subset of the larger spectrum of industrial chemicals used in modern society. The behavior of a pesticide is affected by the natural affinity of the chemical for one of four environmental compartments; solid matter, liquid, gaseous form, and biota. However, the major movements are a physical transport over the ground surface by rainfall-runoff and irrigation-runoff. The irrigated water carries out with the transporting sediments and makes contaminated water by pesticide. This paper focuses on risk impact identification and assessment using GIS technique. Also, generated data on pesticide residues on farmland and surface water through GIS simulation will be reflected to environmental research programs. Finally, this study indicates that GIS application is a beneficial tool for spatial pesticide impact analysis as well as environmental risk assessment.

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

Optimization of optical design for Eye Glass Display using hybrid aspheric lens (Hybrid 비구면 렌즈를 이용한 Eye glass Display용 광학시스템의 최적화)

  • Kim, T.H.;Park, K.B.;Park, Y.S.;Kim, H.W.;Seok, J.M.;Moon, H.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.123-126
    • /
    • 2005
  • Eye Glass Display (EGD) with microdisplay to realize the virtual display can make the large screen, so virtual image has been developed by using microdisplay panel. This paper shows study of low cost lens design and simulation for microdisplay system with 0.6"LCoS panel. Lens design optimized consider to spherical aberration, astigmatism, distortion, and chromatic aberration. Code V is used and it designed an aspheric lens about exit pupil 6mm, eye relief 20mm and 35 degree of field of view (FOV). With the application this aspheric lens to liquid crystal on silicon (LCOS) type's microdisplay, virtual image showed 50 inch at 2m. One side of the aspheric lens was constituted from diffractive optical element (DOE) for the improvement in a performance. It had less than 2.5% of distortion value and modulation transfer function in axial had 20% of resolution with 32 lp/mm spatial frequency. The optical system is suitable for display of 15.6 mm-diagonal with SVGA.

  • PDF