• Title/Summary/Keyword: Liquid sensor

Search Result 315, Processing Time 0.025 seconds

Flow Velocity and Mass Measurement Sensor of Constant Temperature Type (정온도형 유속 및 유량 측정센서)

  • Park, Se-Kwang;Kim, Hyoung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1992
  • A constant temperature type of flow sensor using a solid state micromachining technology was developed for measuring the velocity of gas or liquid. It was designed to detect only the heat convection related to flow velocity. Other heat transfer terms and common mode interferences are canceled by differentiating both reference and exposed flow sensor. It employs the principle that the change of current through the sensing element can be used to measure the flow velocity. An experimental study of the behavior on this flow sensor was performed in a narrow tube(diameter : 8mm) for city water. The relation between power consumption of the flow sensor and square-root of flow velocity is almost linear in the low velocity range(0-200 cm/sec).

  • PDF

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature (NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서)

  • Choi, Myung Sik;Kim, Min Young;Ahn, Jihye;Choi, Seung Joon;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

High-Sensitivity Microstrip Patch Sensor Antenna for Detecting Concentration of Ethanol-Water Solution in Microliter Volume (마이크로리터 부피의 에탄올 수용액 농도 검출을 위한 고감도 마이크로스트립 패치 센서 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.510-515
    • /
    • 2022
  • In this paper, a microstrip patch sensor antenna (MPSA) for detecting the concentration of an ethanol-water solution in a microliter volume is proposed. A rectangular slot was added at the radiating edge of the patch to increase the sensitivity to the relative permittivity change. To improve a low input resistance caused by placing an ethanol-water solution, which is a polar liquid with high dielectric constant and high loss tangent, on the patch, a quarter-wave impedance transformer was added between the 50-ohm feedline and the patch, and the MPSA was fabricated on a 0.76 mm-thick RF-35 substrate. A cylindrical container was made of acryl, and 15 microliters of the ethanol-water solution was tested from 0% to 100% of ethanol concentration at 20% intervals. Experiment results show that the resonant frequency increased from 1.947 GHz to 2.509 GHz when the ethanol concentration of the ethanol-water solution was increased from 0% to 100%, demonstrating the performance as a concentration detecting sensor.

Liquid electrochemical sensors using carbon nanotube film (Carbon Nanotube Film을 이용한 액체 전기화학 센서)

  • Noh, Jaeha;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.255-260
    • /
    • 2021
  • We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.

Development of Liquid Crystal Optic Modulation Based X-ray Dosimeter by Using CdS Sensor (CdS 센서를 이용한 액정 광변조 X-선 검출 시스템 개발)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Kim, Hyun-Hee;Cho, Chang-Hoon;Park, Jun-Hong;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.357-361
    • /
    • 2011
  • In this study, the liquid-crystal optical modulation X-ray detection system using a CdS which is a family of II-IV compound semiconductor was proposed. The system consist of the detector, the signal processing part, the liquid-crystal driving parts, microcontroller, and I/O parts, and was designed to be suitable for miniaturization and portable. In addition, the system can measure a wide range X-ray by using the detecting range selection. In order to evaluate the performance of the proposed system, the CdS sensor's output characteristics were confirmed in accordance with changes of dose, and excellent correlation was determined. And also, the optical penetration ratio was discussed in accordance with changes of the applied voltage by measuring the change of the liquid-crystal in accordance with changes of the applied voltage. Through these results, the characteristics of the liquid-crystal optical modulation system such as the excellent reproducibility and the noise immunity were confirmed. And we considered that the CdS cell-based liquid-crystal optical modulated portable X-ray detection system could be applied to compact, low-cost, portable system.

Electroactive Polymer Composites as a Tactile Sensor for Biomedical Applications

  • Kim GeunHyung
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.564-572
    • /
    • 2004
  • Modem applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a 'created composite' results; it consists of these 'pseudofibers' embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials' micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

Refractometer for liquids based on a side-polished single-mode fiber (측면 연마 단일모드 광섬유를 이용한 용액용 굴절계)

  • Kim, Kwang-Taek;Lee, Kyu-Hyo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We have demonstrated a refractometer for liquid based on a side-polished fiber. The device consists of a side-polished single mode fiber and a rectangular space which plays a role of the multimode planar waveguide when it is infused with a liquid. We presented a simple method to acquire the refractive index of a liquid by use of the spacings of periodic resonance wavelengths of the device. The resolution of the fabricated refractometer was order of $10^{-5}$

Smart Cargo Monitoring System Based on Decision Support System for Liquid Carrier Tanker

  • Kim, Youn-Tae;Baek, Gyeong-Dong;Jeon, Tae-Ryong;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.140-145
    • /
    • 2008
  • In this paper, we constructed the advanced cargo monitoring system for liquid cargo tankers which embedded the Decision Support System (DSS) based on the International Ship Management Code (ISM Code). To make this system, we first organized a base of expert's knowledge concerning liquid tanker operations that largely affect ocean accidents. We can find out the knowledge via inference method which simply imitates the fuzzy inference method. Based on this expert's knowledge, we constructed the DSS that provides a code of conduct for operating cargo tanks safely. The proposed monitoring system could eliminate human error when confronting dangerous situations, so the system will help sailors to operate cargo tanks safely.

2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays

  • Lee, Woo Jin;Kim, Bohyun;Han, Sang Woo;Seo, Minjeong;Choi, Song-Ee;Yang, Hakyeong;Kim, Shin-Hyun;Jeong, Sohee;Kim, Jin Woong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.393-398
    • /
    • 2018
  • This work offers a promising approach for development of a temperature-responsive colorimetric display platform. For this purpose, uniform thermochromic microcapsules consisting of a cholesteric liquid crystal (CLC) core and a thin polyurethane shell layer were fabricated by conducting in-situ condensation polymerization at the interface of monodisperse CLC-in-water emulsion drops. Colloidal packing-driven microcapsule registry led to exact 2-dimensional positioning of CLC microcapsules into a holes-patterned flexible film stencil. Furthermore, we showed that the designated registry of different color types of CLC microcapsules on the stencil enabled development of a microwriting display technology capable of reversible text representation according to temperature change.

Electrochemical Determination of Capsaicin by Ionic Liquid Composite-Modified Electrode

  • Kim, Dong-Hwan;Nam, Sungju;Kim, Jaeyoon;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • An electrochemical detection method for capsaicin has been developed using ionic liquid (IL) doped graphene-titania-Nafion composite-modified electrode. The combination of IL (1-hexyl-3-methylimidazolium with hexafluorophosphate counter ion) in the composite-modified electrode resulted in a significantly increased electrochemical response for capsaicin compared to that obtained at the corresponding electrode without IL. The increased electrochemical signal could be ascribed to the decreased electron transfer resistance through the composite film and also to the effective accumulation of capsaicin on the electrode surface due to ${\pi}-{\pi}$ interaction of the imidazole groups of IL with the aromatic rings of capsaicin. The present IL composite-modified electrode can detect capsaicin with a concentration range from $3.0{\times}10^{-8}M$ to $1.0{\times}10^{-5}M$ with a detection limit of $3.17{\times}10^{-9}M$ (S/N = 3). The present sensor showed good reproducibility (RSD = 3.2%).