DOI QR코드

DOI QR Code

2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays

  • Lee, Woo Jin (Department of Bionano Technology, Hanyang University) ;
  • Kim, Bohyun (Department of Bionano Technology, Hanyang University) ;
  • Han, Sang Woo (Department of Bionano Technology, Hanyang University) ;
  • Seo, Minjeong (Department of Bionano Technology, Hanyang University) ;
  • Choi, Song-Ee (Department of Bionano Technology, Hanyang University) ;
  • Yang, Hakyeong (Department of Bionano Technology, Hanyang University) ;
  • Kim, Shin-Hyun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jeong, Sohee (Korea National Industrial Convergence Center, Korea Institute of Industrial Technology) ;
  • Kim, Jin Woong (Department of Bionano Technology, Hanyang University)
  • Received : 2018.08.07
  • Accepted : 2018.08.24
  • Published : 2018.12.25

Abstract

This work offers a promising approach for development of a temperature-responsive colorimetric display platform. For this purpose, uniform thermochromic microcapsules consisting of a cholesteric liquid crystal (CLC) core and a thin polyurethane shell layer were fabricated by conducting in-situ condensation polymerization at the interface of monodisperse CLC-in-water emulsion drops. Colloidal packing-driven microcapsule registry led to exact 2-dimensional positioning of CLC microcapsules into a holes-patterned flexible film stencil. Furthermore, we showed that the designated registry of different color types of CLC microcapsules on the stencil enabled development of a microwriting display technology capable of reversible text representation according to temperature change.

Keywords

Acknowledgement

Supported by : Samsung Electronics

References

  1. C. Byrne, C.L. Lim, Br. J. Sports Med. 41 (2007) 126. https://doi.org/10.1136/bjsm.2006.026344
  2. S. Chen, X. Dong, C. Mao, F. Cao, J. Amer. Ceram. Soc. 89 (2006) 3270. https://doi.org/10.1111/j.1551-2916.2006.01201.x
  3. Y. Wang, Y. Jia, Q. Chen, Y. Wang, Sensors 8 (2008) 7982. https://doi.org/10.3390/s8127982
  4. H. Akre, O. Skatvedt, Eur. Arch. Otorhinolaryngol. 257 (2000) 251. https://doi.org/10.1007/s004050050233
  5. G.S. Campbell, G.L. Ashcroft, S.A. Taylor, J. Appl. Meteorol. 3 (1964) 640. https://doi.org/10.1175/1520-0450(1964)003<0640:TSFTMN>2.0.CO;2
  6. M. Brehmer, J. Lub, P. van de Witte, Adv. Mater. 10 (1998) 1438. https://doi.org/10.1002/(SICI)1521-4095(199812)10:17<1438::AID-ADMA1438>3.0.CO;2-#
  7. H. Fudouzi, Y. Xia, Adv. Mater. 15 (2003) 892. https://doi.org/10.1002/adma.200304795
  8. H. Fudouzi, Y. Xia, Langmuir 19 (2003) 9653. https://doi.org/10.1021/la034918q
  9. P. Jiang, D.W. Smith, J.M. Ballato, S.H. Foulger, Adv. Mater. 17 (2005) 179. https://doi.org/10.1002/adma.200306680
  10. Y. Lu, J. Wei, Y. Shi, O. Jin, J. Guo, Liq. Cryst. 40 (2013) 581. https://doi.org/10.1080/02678292.2013.776708
  11. T. Schneider, D.J. Davis, S. Franklin, N. Venkataraman, D. McDaniel, F. Nicholson, E. Montbach, A. Khan, J.W. Doane, New developments in flexible cholesteric liquid crystal displays presented at Integrated Optoelectronic Devices 2007; 2007.
  12. G.P. Crawford, S. Zumer, Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks, CRC Press, 1996.
  13. D.K. Yang, J.L. West, L.C. Chien, J.W. Doane, J. Appl. Phys. 76 (1994) 1331. https://doi.org/10.1063/1.358518
  14. P. Ireland, T. Jones, J. Phys. E 20 (1987) 1195. https://doi.org/10.1088/0022-3735/20/10/008
  15. S.-C. Jeng, S.-J. Hwang, Y.-H. Hung, S.-C. Chen, Opt. Express 18 (2010) 22572. https://doi.org/10.1364/OE.18.022572
  16. P. Liu, L. Liu, K. Jiang, S. Fan, Small 7 (2011) 732. https://doi.org/10.1002/smll.201001662
  17. I. Sage, Liq. Cryst. 38 (2011) 1551. https://doi.org/10.1080/02678292.2011.631302
  18. J. Kazzaz, M. Singh, M. Ugozzoli, J. Chesko, E. Soenawan, D.T. O'Hagan, J. Control. Release 110 (2006) 566. https://doi.org/10.1016/j.jconrel.2005.10.010
  19. C.S. Peyratout, L. Daehne, Angew. Chem. Int. Ed. 43 (2004) 3762. https://doi.org/10.1002/anie.200300568
  20. G. Sukhorukov, A. Fery, H. Mohwald, Prog. Polym. Sci. 30 (2005) 885. https://doi.org/10.1016/j.progpolymsci.2005.06.008
  21. Y. Yeo, K. Park, Arch. Pharm. Res. 27 (2004) 1. https://doi.org/10.1007/BF02980037
  22. A. Darmon, M. Benzaquen, D. Sec, S. Copar, O. Dauchot, T. Lopez-Leon, Proc. Natl. Acad. Sci. U. S. A 113 (2016) 9469. https://doi.org/10.1073/pnas.1525059113
  23. Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, J.P. Lagerwall, Sci. Rep. 6 (2016) 26840. https://doi.org/10.1038/srep26840
  24. J. Noh, H.-L. Liang, I. Drevensek-Olenik, J.P. Lagerwall, J. Mater. Chem. C 2 (2014) 806. https://doi.org/10.1039/C3TC32055C
  25. M. Schwartz, G. Lenzini, Y. Geng, P.B. Ronne, P.Y. Ryan, J.P. Lagerwall, Adv. Mater. (2018) 1707382.
  26. M. Moreira, I. Carvalho, W. Cao, C. Bailey, B. Taheri, P. Palffy-Muhoray, Appl. Phys. Lett. 85 (2004) 2691. https://doi.org/10.1063/1.1781363
  27. A. Utada, E. Lorenceau, D. Link, P. Kaplan, H. Stone, D. Weitz, Science 308 (2005) 537. https://doi.org/10.1126/science.1109164
  28. J.W. Kim, A.S. Utada, A. Fernández-Nieves, Z. Hu, D.A. Weitz, Angew. Chem. 119 (2007) 1851. https://doi.org/10.1002/ange.200604206
  29. B. Kim, S.W. Han, S.-E. Choi, D. Yim, J.-H. Kim, H.M. Wyss, J.W. Kim, Biomacromolecules 9 (2018) 386.
  30. K. Lv, D. Liu, W. Li, Q. Tian, X. Zhou, Dyes Pigm. 94 (2012) 452. https://doi.org/10.1016/j.dyepig.2012.02.004
  31. S.S. Lee, S.K. Kim, J.C. Won, Y.H. Kim, S.H. Kim, Angew. Chem. 127 (2015) 15481. https://doi.org/10.1002/ange.201507723
  32. S.S. Lee, H.J. Seo, Y.H. Kim, S.H. Kim, Adv. Mater. (2017) 29.
  33. H. Asoh, K. Fujihara, S. Ono, Nanoscale Res. Lett. 7 (2012) 406. https://doi.org/10.1186/1556-276X-7-406
  34. K.Y. Suh, Y.S. Kim, H.H. Lee, Adv. Mater. 13 (2001) 1386. https://doi.org/10.1002/1521-4095(200109)13:18<1386::AID-ADMA1386>3.0.CO;2-X
  35. Y. Yin, Y. Lu, B. Gates, Y. Xia, J. Am. Chem. Soc. 123 (2001) 8718. https://doi.org/10.1021/ja011048v
  36. H. Fujikake, H. Sato, T. Murashige, Displays 25 (2004) 3. https://doi.org/10.1016/j.displa.2004.04.001
  37. N. Tamaoki, Adv. Mater. 13 (2001) 1135. https://doi.org/10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S
  38. S.-Y. Lu, L.-C. Chien, Appl. Phys. Lett. 91 (2007) 131119. https://doi.org/10.1063/1.2790499

Cited by

  1. Microparticle‐Based Soft Electronic Devices: Toward One‐Particle/One‐Pixel vol.30, pp.2, 2018, https://doi.org/10.1002/adfm.201901810
  2. Boston Ivy Disk‐Inspired Pressure‐Mediated Adhesive Film Patches vol.16, pp.9, 2020, https://doi.org/10.1002/smll.201904282
  3. A New Class of Chiral Nematic Phase with Helical Polar Order vol.33, pp.35, 2018, https://doi.org/10.1002/adma.202101305
  4. Feasible fabrication and textile application of polymer composites featuring dual optical thermoresponses vol.419, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.129553