• Title/Summary/Keyword: Liquid phase plasma

Search Result 174, Processing Time 0.028 seconds

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Determination of 10${\alpha}$-Methoxy-9,10-dihydrolysergol (MDL), Main Metabolite of Nicergoline, in Human Plasma by HPLC-MS and Applicability to Oral Bioavailability in Korean Healthy Male Volunteers (HPLC-MS를 이용한 생체시료 중 니세르골린의 주대사체인 10${\alpha}$-Methoxy-9,10-dihydrolysergol(MDL)의 분석 및 이를 이용한 한국인 성인 남성에 대한 생체이용률 응용)

  • Lim, Hyon-Kyun;Yoo, Sun-Dong;Kim, Kyeong-Ho;Han, Sang-Beom;Youm, Jeong-Rok
    • YAKHAK HOEJI
    • /
    • v.51 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • A simple and sensitive HPLC-MS method for quantitation of 10${\alpha}$-methoxy-9,10-dihydrolysergol (MDL), the main metabolite of nicergoline, in human plasma was developed and the bioavailability parameters of MDL was assessed in Korean healthy male volunteers. Clomipramine was used as an internal standard. MDL and internal standard in plasma sample were extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase of 10 mM ammonium acetate-acetonitrile (10 : 90, v/v). The reconstituted samples were injected into a Zorbax SB-C8 column (2.1${\times}$150 mm,5 ${\mu}$m) at a flow-rate of 0.3 ml/min. Using MS with selected ion monitoring (SIM) mode, MDL and clomipramine were detected without severe interference from human plasma matrix. MDL produced a protonated molecular ion ([M+H]$^+$) at m/z 287. Internal standard produced a protonated molecular ion ([M+H]$^+$) at m/z 315. A linear relationship for MDL was found in the range of 2.5${\sim}$100 ng/ml. The lower limit of quantitation (LLOQ) was 2.5 ng/ml with acceptable precision and accuracy. The intra- and inter-day validation for all coefficients of variation (R.S.D.%) were found less than 15%. Main pharmacokinetic parameters of 30 mg of nicergoline were revealed as follows: AUC$_t$ 321.1${\pm}$64.5 ng${\cdot}$hr/ml, C$_{max}$, 51.2${\pm}$25.3 ng/ml, T$_{max}$ 3.6${\pm}$1.5 hr, K$_{el}$ 0.12${\pm}$0.07 hr$^{-1}$ and t$_{1/2}$ 7.6${\pm}$3.4 hr. Inter subject variations and race differences were shown in comparison with the published data in the literature.

Detection and Measurement of Retinoic Acid in Human Liver Samples (간 조직내의 Retinoic Acid 검출 및 측정 방법)

  • 김초일
    • Journal of Nutrition and Health
    • /
    • v.24 no.3
    • /
    • pp.199-205
    • /
    • 1991
  • Retinoic acid. the active metabolite of vitamin A. was detected in the human liver for the first time using a new method. A rapid and sensitive technique has been developed using gradient-elution. reverse-phase high performance liquid chromatography. This assay. with simultaneous multiwavelength detection at 294nm, 325nm and 450nm after saponifcation of liver samples. allows us seperation and quantitation of vitamin E, retinoic acid, total retinoids and various carotenoids in one small sample. The proportion of retinoic acid to total retinoids in human liver appears to be quite $consistent(2.4\pm0.2%$ ). With low vitamin A storage in liver, detection at another wavelenth 354nm would increase the sensitivity for retinoic acid of small quantity This method of analysis could be used for other tissues like red blood cells, plasma or serum, also. Hepatic retinoic acid level with total retinoids and carotenoids would serve a better indicator of functional vitamin A nutriture especially for those with disease requiring needle biopsy of liver.

  • PDF

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Determination of homogentisic acid in human plasma by GC-MS for diagnosis of alkaptonuria (GC-MS를 이용한 혈장 중 호모겐티식산의 분석;알캅톤뇨증의 진단)

  • Thapa, Maheshwor;Yu, Jundong;Lee, Wonjae;Islam, Fokhrul;Yoon, Hye-Ran
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.323-330
    • /
    • 2015
  • Alkaptonuria, a rare inherited metabolic disease, is characterized by a lack of homogentisate dioxygenase and accumulation of homogentisic acid (HGA), leading to homogentisic aciduria, arthritis, and ochronosis. In this study, a rapid analytical method, without an expensive and tedious solid phase extraction step, was developed to quantify HGA in plasma using GC-MS. HGA-spiked pooled plasma samples were subjected to liquid-liquid extraction (LLE) with ethyl acetate, followed by trimethylsilyl derivatization (TMS) and GC-MS quantification using selected ion monitoring. The formation of TMS derivative of the 1 carboxylic and 2 hydroxyl functional groups was performed by reacting BSTFA (with 10% TMCS) for 5 min at 80 ℃. For selected ion monitoring, quantification and confirmation ions were determined based on specific ions (m/z 384, m/z 341 and m/z 252) of the TMS derivative of HGA. Calibration curves of pooled normal plasma specimens showed a linear relationship in the range of 1-100 ng/µL. The precision and accuracy were within a relative standard deviation (RSD) of 1 to 15% and a bias of -5 to 25%. Recoveries were obtained in the range of 99-125% and 95-115% for intra-day and inter-day assay, respectively, at 2, 20 and 80 ng/µL. The limit of detection (LOD) and limit of quantification (LOQ) were 0.4 ng/µL and 4 ng/µL, respectively. No homogentisic acid was excreted from normal Korean plasma samples. Collectively, the results from the present study suggest that this method could be useful for routine diagnosis and therapeutic monitoring of alkaptonuria patients with excellent sensitivity and rapidity.

Spark plasma sintering of UO2 fuel composite with Gd2O3 integral fuel burnable absorber

  • Papynov, E.K.;Shichalin, O.O.;Belov, A.A.;Portnyagin, A.S.;Buravlev, I.Yu;Mayorov, V.Yu;Sukhorada, A.E.;Gridasova, E.A.;Nomerovskiy, A.D.;Glavinskaya, V.O.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1756-1763
    • /
    • 2020
  • The paper studies spark plasma sintering (SPS) of industrially used UO2-based fuel containing integral fuel burnable absorber (IFBA) of neutrons Gd2O3. Densification dynamics of pristine UO2 powder and the one added with 2 and 8 wt% of Gd2O3 under ultrasonication in liquid has been studied under SPS conditions at 1050, 1250, and 1450 ℃. Effect of sintering temperature on phase composition as well as on O/U stoichiometry has been investigated for UO2 SPS ceramics. Sintering of uranium dioxide added with Gd2O3 yields solid solution (U,Gd)O2, which is isostructural to UO2. SEM with EDX and metallography were implemented to analyze the microstructure of the obtained UO2 ceramics and composite UO2-Gd2O3 one, particularly, open porosity, defects, and Gd2O3 distribution were studied. Microhardness, compressive strength and density were shown to reduce after addition of Gd2O3. Obtained results prove the hypothesis on formation of stable pores in the system of UO2-Gd2O3 due to Kirkendall effect that reduces sintering efficiency. The paper expands fundamental knowledge on pros and cons of fuel fabrication with IFBA using SPS technology.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Validation of a HPLC MS/MS Method for Determination of Doxorubicin in Mouse Serum and its Small Tissues (마우스 혈장과 조직에서의 doxorubicin 측정 HPLC-MS/MS 방법)

  • Park, Jung-Sun;Kim, Hye-Kyung;Lee, Hye-Won;Lee, Mi-Hyun;Kim, Hyun-Gi;Chae, Soo-Wan;Chae, Han-Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • Doxorubicin (DXR) is a type of anti-cancer drug called an 'anthracycline glycoside', It works by impairing DNA synthesis, a crucial feature of cell division, and thus is able to target rapidly dividing cells. Doxorubicin is a very serious anti-cancer medication with definite potential to do great harm as well as great good. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to identify and quantify DXR in small-volume biological samples. After the addition of internal standard (IS, $5{\mu}L\;of\;1{\mu}M/ml$ daunorubicin methanol solution) into the serum sample, the drug and IS were extracted by methanol. Following vortex for a 1min and centrifugation at 15,000g for 10 min the organic phase was transferred and evaporated under a vacuum. The residue was reconstituted with $350{\mu}L$ of mobile phase and $10{\mu}L$ was injected into C18 column with mobile phase composed of 0.05M ammonium acetate (0.1 M acetic acid adjusted to pH 3.5) and acetonitrile (40:60, v/v). The flow rate was kept constant at $350{\mu}L/min$. The ions were quantified in the multiple reaction mode (MRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Doxorubicin in plasma and small tissues were approximately 0.5 ng/mL and 0.5 ng/mL respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (% CV) for all analytes were within 15%, respectively.

  • PDF

Metabolic Pharmacokinetics in Rats: Differences between Pure Amygdalin and Amygdalin in a Decoction of Peach Seeds

  • Chen, Jianbo;Yan, Xitao;Kim, Tae-Jin;Kim, Sang-Hyuck;Kim, Kyung-Tae;Lee, Young-Keun;Cho, Cheong-Weon;Baek, Jong-Suep;Park, Yong-Ki;Kim, Young-Ho;Lee, Won-Jae;Kang, Jong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1470-1474
    • /
    • 2012
  • The pharmacokinetics of prunasin after oral administration of amygdalin or a decoction of peach seeds was determined and compared in rats. A $C_{18}$ column was used for separation at a column temperature of $25^{\circ}C$. The mobile phase consisted of 20% aqueous acetonitrile, and the flow rate was 0.5 mL/min. After oral administration of a decoction of peach seeds, prunasin was absorbed rapidly, reaching a maximum plasma concentration ($C_{max}$) of 62.1 mg/L within 45 min. After oral administration of amygdalin, the absorption of prunasin was delayed. The $C_{max}$ of prunasin was 42.9 mg/L and was reached at 60 min. Values for the pharmacokinetic parameters of prunasin, including $T_{max}$, $C_{max}$, AUC, $T_{1/2}$, CL/F, and V1/F, were significantly different for the oral administration of amygdalin compared with that of a decoction of peach seeds.

Production of Fe Amorphous Powders by Gas-atomization Process and Subsequent Spark Plasma Sintering of Fe Amorphous-ductile Cu Composite Powders Produced by Ball-milling Process (I) - I. Gas Atomization and Production of Composite Powders - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu 분말과의 복합화 및 SPS 거동 (I) - I. 가스분무 및 복합화 -)

  • Ryu, Ho-Jin;Lim, Jae-Hyun;Kim, Ji-Soon;Kim, Jin-Chun;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.316-325
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 $\mu$m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 $\mu$m showed that the glass transition, T$_g$, onset crystallization, T$_x$, and super-cooled liquid range $\Delta$T=T$_x$-T$_g$ were 512, 548 and 36$^{\circ}C$, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.