• Title/Summary/Keyword: Liquid passage

Search Result 83, Processing Time 0.021 seconds

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

Simulation of Water Flows in Multiple Columns with Small Outlets

  • Suh Yong-Kweon;Li Zi Lu;Jeong Jong-Hyun;Lee Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1765-1772
    • /
    • 2006
  • High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycletime. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water.

In vitro Transport of Fexofenadine.HCl in Deformable Liposomes Across the Human Nasal Epithelial Cell Monolayers

  • Lin, Hong-Xia;Lee, Chi-Ho;Shim, Chang-Koo;Chung, Suk-Jae;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.483-489
    • /
    • 2004
  • Fexofenadine HCl is non-sedating histamine H1 receptor antagonist that can be used for the treatment of seasonal allergic rhinitis. The objective of this study was to investigate whether the carriers of deformable liposomes can enhance the transepithelial permeability of fexofenadine HCl across the in vitro ALI human nasal monolayer model. Characterization of this model was achieved by bioelectric measurements and morphological studies. The passage 2 and 3 of cell monolayers exhibited the TEER value of $2852\;{\pm}\;482\;ohm\;{\times}\;cm^2$ on 11 days of seeding and maintained high TEER value for 5 days. The deformable liposome of fexofenadine HCl was prepared with phosphatidylcholine (PC) and cholic acid using extruder method. The mean particle size was about 200 nm and the maximum entrapment efficiency of 33.0% was obtained in the formulation of 1% PC and $100\;{\mu}g/ml$ fexofenadine HCl. The toxicity of the deformable liposome to human nasal monolayers was evaluated by MTT assay and TEER value change. MTT assay showed that it has no toxic effect on the nasal epithelial cells in 2-hour incubation when the PC concentration was below 1%. However, deformable liposome could not enhance the transepithelial permeability $(P_{app})$ and cellular uptake of fexofenadine HCl. In conclusion, the in vitro model could be used in nasal drug transport studies and evaluation of transepithelial permeability of formulations.

Quantitative Determination of Organic Yield by Continuous Percolation Processes of Bio-wastes at K Composting Plant

  • Seo, Jeoung-Yoon;Jager, Johannes
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Percolation is the important process of extracting the soluble constituents of a fine mesh, porous substance by passage of a liquid through it. In this study, bio-wastes were percolated under various conditions through continuous percolation processes, and the energy potential of percolate was evaluated. The representative bio-wastes from the K composting plant in Darmstadt, Germany were used as the sample for percolation. The central objective of this study was to determine the optimal amount of process water and the optimum duration of percolation through the bio-wastes. For economic reasons, the retention time of the percolation medium should be as long as necessary and as short as possible. For the percolation of the bio-wastes, the optimal percolation time was 2 hr and maximum percolation time was 4 hr. After 2 hr, more than two-thirds of the organic substances from the input material were percolated. In the first percolation process, the highest yields of organic substance were achieved. The best percolation of the bio-wastes was achieved when the process water of 2 L for the first percolation procedure and then the process water of 1.5 L for each further percolation procedure for a total 8 L for all five procedures were used on 1,000 g fresh bio-waste. The gas formation potentials of 0.83 and $0.96Nm^3/ton$ fresh matter (FM) were obtained based on the percolate from 1 hr percolation of 1,000 g bio-waste with the process water of 2 L according to the measurement of the gas formation in 21 days (GB21). This method can potentially contribute to reducing fossil fuel consumption and thus combating climate change.

Physical, chemical, mechanical, and micromorphological characterization of dental needles

  • de Oliveira Monteiro, Marco Antonio;Antunes, Alberto Nogueira da Gama;Basting, Roberta Tarkany
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.2
    • /
    • pp.139-153
    • /
    • 2021
  • Background: In anesthetic techniques, touching bones can cause needle bending. Theoretically, a needle should support such deflection without fracturing. However, it is possible that a needle may fracture depending on the quality and type of needle used. This study evaluated the physical, chemical, and micromorphological characteristics of long and short dental anesthetic needles, as well as the mechanical properties of flexural load and bending resistance when needles are subjected to different bending angles. Methods: Long and short needles (30G, Jets, Misawa, Selekto, Terumo, Unoject and 27G, Dencojet, Injex, Jets, Misawa, Procare, Setoject XL, Terumo) were evaluated. Scanning electron microscopy was used to evaluate the needle bevels and energy-dispersive X-ray spectroscopy was used for the chemical analysis of needle compositions. Flexural loading and bending strength assessments were performed using a universal testing machine by bending the needles (n = 5) to angles of 30°, 60°, or 90°, or until fracture occurred. Results: The Injex 27G, Jets 27G, and Septoject XL 27G needles were all less than 30 mm in length. There were small percentage variations in the chemical compositions of the needles. Superior smoothness was observed for the Unoject 30G needle, which exhibited the highest fracture resistance at 60°. The Jets 30G needle exhibited greater resistance to fractures at 90°. The Procare 27G needle exhibited the highest load resistance to bending, followed by the Septoject XL 27G needle, and both needles were tied for the lowest fracture resistance. No needle fractured when bent to 30° or at less than three bends to 60° or 90°. Conclusions: Greater needle resistance to bending increases the probability of early fracturing. Thinner and shorter needles are more resistant than longer and thicker needles. Performing a single bend does not result in any significant risk of fracture or obliterate the lumen, allowing for the continued passage of anesthetic liquid.

Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

  • Murillo, M.;Herrera, E.;Ruiz, O.;Reyes, O.;Carrete, F.O.;Gutierrez, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.666-673
    • /
    • 2016
  • Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers ($204{\pm}5kg$ initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers ($BW=350{\pm}3kg$) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen ($NH_3$-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

A Study on Modeling of Watering Control status by Regions Using the Measurement Device of the Ministry of Root Environment (근권 환경부 측정장치를 이용한 지역별 관수제어 모델링 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 2021
  • According to the World Agricultural Productivity Report, the current annual average growth rate of agriculture is 1.63%, which is lower than 1.73% to support the world's 10 billion people, which is growing by 2050. The demand for food, feed, and bioenergy is not growing enough to continue to meet the demand, and it is predicting a future food shortage. The purpose of this study was to create a regional irrigation control model for the purpose of reducing the production cost of crops, increasing production, and improving quality, and presenting a model that can give advice to farmers who start farming in the region. The irrigation control modeling presented in this study means to represent the change of medium weight·supply liquid·drainage amount due to changes in the root zone environment according to the passage of time and climate in a graph model. For water control modeling, we collected data on the change in the amount of the root zone environment and the weight of the badge·supply amount·drainage amount from March to June in Nonsan, Buyeo, and Yesan regions in Chungnam Province through the measuring device of the Ministry of Environment in the root region. We set up the parameters for derivation and derived an irrigation control model that can confirm the change in weight·supply liquid·drainage amount over time through the parameters.

Effect of Construction Joint on Leakage Resistance of Gas in Reinforced Concrete Pressure Vessels (철근콘크리트 압력용기에서 시공이음이 가스의 누설저항에 미치는 영향)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • In the nuclear power plant, the steel or polymer liner plates are adopted to prohibit the inner concrete surface from contacting with gas or liquid materials. If there is an accident, the plate may be damaged, and, in this case, concrete shall have the final responsibility to safety requirements. In this paper, an experimental research was carried out to investigate the effects of construction joint and wet and loading conditions on the permeability of concrete. The test results showed that, under a construction joint in the wet condition, leakage of gas pressure has been started from $1kg/cm^2$. However, when there are no construction joints, it is initiated from $2kg/cm^2$. In addition, under the air dried and unloading condition, regardless of with or without the presence of the construction joint, since the gas passage that exist in concrete is constant, leakage has a constant tendency to increase. Finally, under the loading condition, as described in Reference 1, since leakage is inversely proportional to the thickness of the wall, and, considering the wall thickness of the actual plant, it is found that there will not be no problem in the sealing of the gas.

Alterations of Proteins in Artificially Induced Chronic Myocardial Infarction in Rats

  • Lee, Mi-Jin;Tae, Hyun-Jin;Yu, Do-Hyeon;Li, Ying-Hua;Lee, Jong-Hyun;Yoon, Ji-Seon;Lee, Seok-Won;Kim, In-Shik;Park, Jin-Ho
    • Journal of Veterinary Clinics
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2008
  • We investigated the changes of protein in chronic MI which was occurred with long-term ischemia, without reperfusion. Sprague Dawley (SD) rats were divided into the sham group and the experimental groups (MI groups). The sham group was treated only thoracotomy without ligation for left main descending artery (LMDA) of left coronary artery (LCA), and the experimental groups (MI7d, ligation of LMDA for 7 days and MI30d, ligation of LMDA for 30 days) were conducted an artificial chronic MI. The change of proteins according to passage of times was compared and analyzed on first and second dimension (1 and 2D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Among total 46 spots expressed differentially in the sham group versus MI7d and MI30d groups on 2D gel, we selected proteins that the volume of spot was increased in the MI7d and MI30d groups compared with the sham group. After that, the proteins were identified through liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis. In result, we could obtain many proteins as follows; albumin, glucose regulated protein 58 KDa, similar to tripartite motif protein 50, ubiquinol-cytochrome c reductase core protein II, sarcomeric mitochondrial creatine kinase, ATP synthetase alpha chain (mitochondrial precursor) and creatine kinase. In conclusion, we suggest many changed proteins shown at chronic ischemia after artificial MI and consider that these proteins play an important role in the function of heart after MI.

A Study on the Effects of Biodegradation for Organic Soils (유기질토에 대한 생분해처리 효과에 관한 연구)

  • Song, Yeong-U;Park, Jun-Beom;Kim, Hyeong-Seok
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.151-162
    • /
    • 1998
  • The compressibility and the permeability of organic soil are so high that they cause many engineering problems when constructing a structure on the soil. If the organic content of the soil could be reduced by any applicable engineering technique, the engineering properties of the soils can be improved to some extent. The purpose of this study would thus be focused on how to decrease the amount of organic matters by applying aerobic biodegradation for eliminating post-construction settlement problems. To enhance the aerobic decomposition, oxygen was supplied to the soil samples prepared by the mixture of kaolinite and sawdust as organic matter. The dissolved oxygen and the organic content of the soil samples were measured, in accordance with the passage of time through the bests. As oxygen suppliers, HaOa liquid and pure oxygen gas were compared to meet the requirement of the test purposes. Newly manufactured oedometer with the diameter of 130 mm and the height of 300 mm was used for 100 days to perform the compressibility tests for the soils. Based on the results of this experiment, the oxygen gas-treated samples with nutrient settled 30% more than the samples untreated. This confirmed the efficiency of the aerobic biodegradation. $NaNO_3$ added into the soils as nutrients was proved more effective than $K_2HP0_4$. To confirm the activity of micro-organisms, sodium azide was also added to the soils.

  • PDF