DOI QR코드

DOI QR Code

Effect of silver nanoparticles on the performance of riverbank filtration: Column study

강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험

  • Lee, Donghyun (Department of Civil and Environmental Engineering, Sejong University) ;
  • No, Jin-Hyeong (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Hyun-Chul (Water Resources Research Institute, Sejong University) ;
  • Choi, Jae-Won (Water Analysis and Research Center, K-Water) ;
  • Choi, Il-Hwan (Water Analysis and Research Center, K-Water) ;
  • Maeng, Sungkyu (Department of Civil and Environmental Engineering, Sejong University)
  • 이동현 (세종대학교 건설환경공학과) ;
  • 노진형 (세종대학교 건설환경공학과) ;
  • 김현철 (세종대학교 물자원연구소) ;
  • 최재원 (K-water 수질분석연구센터) ;
  • 최일환 (K-water 수질분석연구센터) ;
  • 맹승규 (세종대학교 건설환경공학과)
  • Received : 2014.12.22
  • Accepted : 2015.02.10
  • Published : 2015.02.15

Abstract

Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

Keywords

References

  1. National Institute of Environmental Research (2006) Development of analytical method and study of exposure of pharmaceuticals and personal care products in environment
  2. Son, H. J., Jeong C.W., Kang, L.S. (2004) The Relationship between Disinfection By-Product Formation and Characteristics of Natural Organic Matter in the Raw Water for Drinking Water, Journal of Korean Society of Environmental Engineers, 26(4), 457-466.
  3. Barker, D. J. and Stuckey, D. C. (1999) A review of soluble microbial products (SMP) in wastewater treatment systems, Water Res., 33(14), 3063-3082. https://doi.org/10.1016/S0043-1354(99)00022-6
  4. Berney, M., Vital, M., Hulshoff, I., Weilenmann, H. .U., Egli, T., Hammes, F. (2008) Rapid cultivation-independent assessment of microbial viability in drinking water, Water Res., 42(14), 4010-4018. https://doi.org/10.1016/j.watres.2008.07.017
  5. Borisover, M., Lordian, A., Levy, G. J. (2012) Water-extractable soil organic matter characterization by chromophoric indicators: Effects of soil type and irrigation water quality, Geoderma, 179-180, 28-37. https://doi.org/10.1016/j.geoderma.2012.02.019
  6. Catalina, M. J. and Hoek, E. M. V. (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, Jouranl of Nanoparticle Res., 12, 1531-1551. https://doi.org/10.1007/s11051-010-9900-y
  7. Choi, O. and Hu, Z. (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, Environ. Sci. Techno., 42(12), 4583-4588. https://doi.org/10.1021/es703238h
  8. Cunningham, V. L. (2004) Special characteristics of pharmaceuticals related to environmental fate," Springer, Berlin.
  9. Felmming, H.-C. and Wingender, J. (2001) Relevance of microbial extracellular polymeric substances (EPSs)-Part I : structural and ecological aspects," Eater Sci. Technol., 43(6), 1-8.
  10. Hammes, F., Berney, M., Wang, Y., Vital, M., Koster, O., Egli, T. (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes, Water res., 42(1-2), 269-277. https://doi.org/10.1016/j.watres.2007.07.009
  11. Hammes, F., Goldschmidt, F., Vital, M., Wang, Y., Egli, T. (2010) Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments, Water Res., 44(13), 3915-3923. https://doi.org/10.1016/j.watres.2010.04.015
  12. Hayes, M. H. B., Swift, R. S., Wardle, R. E., Brown, J. K. (1975) Humic materials from an organic soil: A comparison of extractants and of properties of extracts, Geoderma, 13(3), 231-245. https://doi.org/10.1016/0016-7061(75)90020-8
  13. Hayes, T. B., Hhoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., and Gallipeau, S. (2010) Atrazine induces complete feminization and chemical castration in male african clawed frogs (Xenopus laevis), PNAS, 107(10), 4612-4617. https://doi.org/10.1073/pnas.0909519107
  14. Heberer, T. and Adam, M. (2004) Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment, Environmental Chemistry, 1, 22-25. https://doi.org/10.1071/EN04008
  15. Howard, P. H. (2000) Biodegradation, Handbook of property estimation methods for chemicals, Environmental health sciences CRC press LLC, Boca Raton.
  16. Huber, S. A., Balz, A., Abert, M., Pronk, W. (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND), Water Res., 45(2), 879-885. https://doi.org/10.1016/j.watres.2010.09.023
  17. Hu, Z., Chandran, K., Grasso, D., Smets, B. F. (2002) Effect of nickel and cadmium speciation on nitrification inhibition, Environ. Sci. Technol., 36(14), 3074-3078. https://doi.org/10.1021/es015784a
  18. Hur, J. and Schlautman, M.A. (2003) Using selected operational descriptors to examine the heterogeneity within a bulk humic substance, Environ. Sci. Technol., 37(5), 880-887. https://doi.org/10.1021/es0260824
  19. Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., Matzner, E. (2000) Controls on the dynamics of dissolved organic matter in doil: a review, Soil Science, 165, 277-304. https://doi.org/10.1097/00010694-200004000-00001
  20. Kerr, K. M., Larson, R. J., McAvoy, D. C. (2000) Evaluation of an inactivation procedure for determining the sorption of organic compounds to activated sludge, Ecotoxicol. Enciron. Saf., 47(3), 314-322. https://doi.org/10.1006/eesa.2000.1991
  21. Kummerer, K. (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges, Journal of Environ. Management, 90(8), 2354-2366. https://doi.org/10.1016/j.jenvman.2009.01.023
  22. Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M., Zboril, R. (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs), J. Phys. Chem. C., 112, 5825-5834. https://doi.org/10.1021/jp711616v
  23. Lee, S., Ang, W. S., Elimelech, M. (2006) Fouling of recerse osmosis membranes by hydrophilic organic matter: inplications for water reuse, Desalination, 187(1-3), 313-321. https://doi.org/10.1016/j.desal.2005.04.090
  24. Limbach, L. K., Wick, P., Manser, P., Grass, R. N., Bruinink, A., Stark, W. J. (2007) Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress, Environ. Sci. Technol., 41, 4158-4163. https://doi.org/10.1021/es062629t
  25. Maeng, S. K., Ameda, E., Sharma, S. K., Grutzmacher, G., Amy, G. L. (2010) Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge, Water Res., 44 (14), 4003-4014. https://doi.org/10.1016/j.watres.2010.03.035
  26. Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A., Amy, G. L. (2011a) Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies, Water Res., 45 (16), 4722-4736. https://doi.org/10.1016/j.watres.2011.05.043
  27. Maeng, S. K., Sharma, S. K., Abel, C. D. T., Magic-Knezev, A., Song, K. .G., Amy, G. L. (2012) Effects of effluent organic matter characteristics on the removal of bulk organic matter and selected pharmaceutically active compounds during managed aquifer recharge: Column study, Journal of Contaminant Hydrology, 140-141, 139-149. https://doi.org/10.1016/j.jconhyd.2012.08.005
  28. McGill, W. B., Cannon, K. R., Robertson, J. A., Cook, F. D. (1986) Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to 2 rotations, Canadian journal of soil Science, 66, 1-19. https://doi.org/10.4141/cjss86-001
  29. Mobed, J. J., Hemmingsen, S. L., Autry, J. L., Mcgoen, L. B. (1996) Fluorescence characterization of HISS humic substances: Total luminescence spectra with absorbance correction, Environ. Sci. Techno., 30, 3061-3065. https://doi.org/10.1021/es960132l
  30. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., Yacaman, M. J. (2005) The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  31. Oaks, L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteter, C. U., Rideout, B.A., Shivaprasad, H. L., Ahmed, S., Chaudhry, M. J. I., Arshad, M., Mahmood, S., Ali, A., and Khan, A. A. (2004) Diclofenac residues as the cause of vulture population decline in Pakistan," Nature, 427, 630-633. https://doi.org/10.1038/nature02317
  32. Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., Unrine, J. M. (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms, Soil Sci. Soc. Am. J., 75(2), 365-377. https://doi.org/10.2136/sssaj2010.0127nps
  33. Smetana, A. B., Klabunde, K. J., Marchin, G. R., Sorensen, S. M. (2008) Biocidal activity of nanocrystalline silver powders and particles, Langmuir, 24(14), 7457-7464. https://doi.org/10.1021/la800091y
  34. Stampoulis, D., Sinha, S. K., White, J. C. (2009) Assay-dependent phytotoxicity of nanoparticles to plants," Environ. Sci. Technol., 43(24), 9473-9479. https://doi.org/10.1021/es901695c
  35. Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A., Dickenson, E. R. V. (2011) Sorption of emerging trace organic compounds onto wastewater sludge solids, Water Res., 45(11), 3417-3426. https://doi.org/10.1016/j.watres.2011.03.056
  36. Sudhakaran, S., Maeng, S. K., Amy, G. L. (2013) Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment, Chemosphere, 92, 731-737. https://doi.org/10.1016/j.chemosphere.2013.04.021
  37. Trevors, J. T. (1996) Sterilization and inhibition of microbial activity in soil, Journal of Microbiological Methods, 26, 53-59. https://doi.org/10.1016/0167-7012(96)00843-3
  38. Vital, M., Dignum, M., Magic-Knezev, A., Ross, P., Rietveld, L., Hammes, F. (2012) Flow cytometry and adenosine tri-phosphate analysis: Alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems, Water Res., 46(15), 4665-4676. https://doi.org/10.1016/j.watres.2012.06.010
  39. Westerhoff, P. and Pinney, M. (2000) Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater, Waste Management, 20, 75-83. https://doi.org/10.1016/S0956-053X(99)00277-9
  40. Westerhoff, P., Chen, W., Leenheer, J. A., Booksh, K. (2003) Fluorescence excitation- Emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37, 5701-5710. https://doi.org/10.1021/es034354c
  41. You, S.-J., Thakali, S., Allen, H. E. (2006) Characteristics of soil organic matter (SOM) extracted using base with subsequent pH lowering and sequential pH extraction, Environment International, 32, 101-105. https://doi.org/10.1016/j.envint.2005.07.003

Cited by

  1. Comparison of Potential Risk on Two Managed Aquifer Recharge Sites from River Basin vol.9, pp.9, 2017, https://doi.org/10.3390/w9090674
  2. 경북 지역 먹는 물의 은 검출 특성 vol.33, pp.3, 2015, https://doi.org/10.22807/kjmp.2020.33.3.233