• Title/Summary/Keyword: Liquid Waste Treatment

Search Result 158, Processing Time 0.026 seconds

Effect of ultrasonication, light and liquid smoke treatment on germination of lettuce seeds

  • Park, Sunyeob;Kim, Young Ae;Kim, Min Geun;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.217-217
    • /
    • 2017
  • Seed priming leading to improved emergences, germination speed and uniformity under unfavorable conditions without loss of longevity are the best level of techniques. We studied the possibility to obtain primed seed with reduced mean germination time (MGT) and uniformity but with simple, fast and effective methods. The experiments were carried out at $15^{\circ}C$ for 16 hours with priming treatment. To compare the effects of each treatment, we used 200mM $CaCl_2$ priming or hydro priming or no imbibition after ultrasonication or red light treatment. The light treatment was performed by irradiating 2000 lux of red light for 15, 30, 60, and 120 minutes. Addition, in order to investigate the effect of the priming solution, treated at 200mM $CaCl_2$ for 8 hours. Ultrasonication treatment was performed for 5, 10, and 20 minutes at exposures of 13.0, 17.3, and 21.6 kHz during priming. For liquid smoke (LS) treatment, seed soaked in 0%, 0.5%, 1.0%, 5.0% and 10.0% of diluted water and 200mM $CaCl_2$ solution. After each treatment, the seeds were dried to moisture content ranged 5-8% at $25^{\circ}C$ for 24 hours. The effect of seed treatment was evaluated with germination percentage (GP), MGT, germination index(GI), germination rate(GR), Germination Uniformity(GU) and heath seed percentage(HS). For several factors tested, we found that the desired germination improvement could be obtained by treating the seed with ultrasonication at 17.3 kHz for 5 minutes in water or red light exposure at 2000 lux for 120 min in water that resulted very similar to those used to 200mM $CaCl_2$ priming for 16 hrs. However, LS treatment showed no improvement in all diluted solution. Therefore, the methods applied ultrasonication and red light treatment showed high potential for fast and easy treatment avoiding pollution of salt solution waste.

  • PDF

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Chemical Treatment for the Destruction of Aflatoxins in Laboratory Waste Water (실험실 폐수중 Aflatoxin 감소를 위한 화학적 처리에 관한 연구)

  • 김종규
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.52-56
    • /
    • 1992
  • The ability of chemicals, 10% sodium hypochlorite, 28% ammonium hydroxide, 5% sodium hydroxide, 5% sodium bicarbonate, 0.1% hydrochloric acid, 5% hydrogen peroxide, and 5% acetone, to destroy aflatoxins in laboratory waste water containing 3.26 ppb of B$_{1}$ 7.64 ppb of B$_{6}$3 ppb of G$_{1}$, and 11.39 ppb of G$_{2}$ with the total of 29.11 ppb was investigated. High performance liquid chromatograph (HPLC) was used for the separation and quantitation of aflatoxins. Treatment for 2 hours by the chemicals affected the destruction of aflatoxins and the most effective chemical was 10% sodium hypochlorite (p<0.05). Sodium hypochlorite concentrations more than 1% significantly reduced aflatoxin B$_{2}$, G$_{1}$, G$_{2}$ and total aflatoxins and more than 3% reduced B$_{1}$ (p<0.05). No further significant decreases were observed above the concentration of 5% for all 4 aflatoxins. Complete destruction of aflatoxins B$_{2}$, G_{1}$, and G$_{2}$ was achieved by 5% sodium hypochlorite at 48 hours and B$_{1}$ at 72 hours.

  • PDF

Adsorption Study on the Radioactive Liquids by Korean Vermiculite (한국산(韓國産) Vermiculite에 의(依)한 방사성동위원소(放射性同位元素) 흡착연구(吸着硏究))

  • Moon, Suc-Hyong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.7 no.1
    • /
    • pp.51-54
    • /
    • 1973
  • The use of ion-exchange resins for the treatment of radioactive wastes has many advantages, but thes eare rather expensive as compared with the Korean vermiculite. The Korean vermiculite has slightly different chemical constituents from the ones produced in other countries, and its physical properties might be applicable to the management of radioactive waste, in a small nuclear installation. The decontaminating effect of Korean vermiculite for the low-level radioactive liquid was investigated. $^{106}Ru,\;^{90}Sr,\;and\;^{137}Cs$ were utilized for the experiments. The removal rates by Korean vermiculite were calculated for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ and the removal rates increased as the weight of vermiculite in the exchange column increased. The decontaminating constants, $K_d$ of the Korean vermiculite for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ were 2.7, 69.3 and 263ml/g respectively. Through the results of experiments, the application of Korean vermiculite column to the treatment of low-level radioactive waste is quite feasible.

  • PDF

A study on the optimized coagulation for separation of liquid and solid from CMP waste (CMP 폐액의 고액 분리를 위한 최적 응집조건에 관한 연구)

  • Hong, Seongho;Oh, Suckhwan
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The waste slurry generated from CMP process contains particulate and heavy metals. It is hard to treat the waste slurry by conventional treatment method because the particulates in the waste are too fine to be easily separated the solid from the waste for the purpose of water recycling. The investigation was focused on finding the optimum condition of coagulation with two different coagulants. When the solid content in the waste slurry solution was 0.1wt%, the optimal ranges of pH and PACl concentration were 4~6 and 20~50 mg/L, respectively. When the solid content was increased to 0.5wt%, the optimal condition was 4~5 for pH and 50~100 mg/L for PACl concentration.

  • PDF

Effects of the Characteristics of Influent Wastewater on Removal Efficiencies for Organic Matters in Wastewater Treatment Plants (하·폐수 처리시설 내 유입수 특성이 유기물 처리효율에 미치는 영향)

  • Lee, Tae-Hwan;Park, Min-Hye;Lee, Bomi;Hur, Jin;Yang, Heejeoug
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.674-681
    • /
    • 2009
  • Characteristics of organic matters (OM) in wastewater and the removal efficiencies were investigated using the influent and the effluent samples collected from 21 wastewater treatment plants. The OM characteristics investigated included biodegradability, humic content, specific UV absorbance (SUVA), the distribution percentage of refractory OM (R-OM), and synchronous fluorescence spectra. The types of wastewater (sewage, livestock waste/night soils, industrial waste) were easily distinguished by comparing the synchronous fluorescence spectra of the influent wastewater. The prominent peak of protein-like fluorescence (PLF) was observed for livestock waste/night soils whereas sewage exhibited a unique fluorescence peak at a wavelength of 370 nm. Irrespective of the wastewater types, the distribution percentage of R-OM increased from the influent to the effluent. Livestock waste/night soils showed the highest removal efficiency among all the three types of wastewater. There was no statistical difference of the removal efficiency between a traditional activated sludge and biological advanced treatment processes. Removal efficiency based on dissolved organic carbon DOC presented good correlations with the distribution percentage of R-OM and fulvic-like fluorescence (FLF) of the influent. The prediction for DOC removal efficiency was improved by using multiple regression analyses based on some selected OM characteristics and mixed liquid suspended solid (MLSS).

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

Laboratory Investigation into Factors Affecting Performance of Anaerobic Contact Process for Pear Processing Wastewater

  • Hur Joon Moo;Son Bu Soon;Jang Bong Ki;Park Jong An;Lee Jong Whoa;Kim Joon Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.99-108
    • /
    • 1998
  • Results obtained from this research showed that the anaerobic contact process was applicable to pear waste with COD removal efficiencies of up to $95\%$ depending on conditions, provided ammonium and phosphate salts were added as well as other nutrients, present in the commercial fertilizer, Milorganite or in yeast extract. These latter materials were required in minimum concentrations of 5 and 1.5 g/L, respectively, in the feed independent of HRT and volatile solids loading rate, with part of the effect due to the mineral fraction. Digestion was satisfactory over the whole range of volatile solids loading rates and liquid retention time of 30 to 0.5 days tested, although treatment efficiency dropped off noticeably between 1 and 0.5 day liquid retention time because of poorer flocculation and separation of anaerobic bacteria. Settling of anaerobic bacteria including methane producing bacteria was related to settling of mixed liquor suspended solids only at 1 to 5 days liquid retention times, at other liquid retention times anaerobic microorganism settled markedly less efficiently than mixed liquor suspended solids. Further studies are being made to provide information of practical and basic interest. Data on the composition of the active fraction of yeast extract might solve many practical nutrient problems encountered with the anaerobic contact process and improve its economics. Further improvement in the flocculation and settling of anaerobic bacteria as well as other bacteria would improve overall performance and allow the use of shorter liquid retention times with dilute waste. Knowledge about the numbers of methane formers present would allow a degree of understanding and control of the process not presently attainable.

  • PDF

One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste

  • Wu, Hao;Kim, Seong-Yun;Ito, Tatsuya;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3641-3649
    • /
    • 2022
  • A simple solvothermal reaction was used to prepare a 3-aminopropyl-functionalized silica-gel-based adsorbent for adsorbing Pd(II) from the nitric acid solution. Scanning electron microscopy, fourier transform infrared spectroscopy, and thermogravimetry analysis were performed on the as-synthesized adsorbent to demonstrate the successful introduction of Schiff base groups. Batch experiments were used to investigate the effects of contact time, nitric acid concentration, solution temperature, and adsorption capacity. It is worth noting that the prepared adsorbent exhibited a higher affinity toward Pd(II) with the uptake approximately 100% even in a 2 M HNO3 solution. At an equilibrium time of 5 h, the maximum adsorption capacity of Pd(II) was estimated to be 0.452 mmol/g. The adsorbed Pd(II) could be completely eluted by dissolving 0.2 M thiourea solution in 0.1 M HNO3. Using a combination of particle-induced X-ray emission analysis and an X-ray photoelectron spectrometer, the adsorbed Pd was found to be uniformly distributed on the surface of the prepared adsorbent and the existing species were Pd(II) and zero-valent Pd(0). Due to the desirable performances, facile preparation method, and abundant raw material source, the prepared adsorbent demonstrated a high application potential in the recovery of Pd(II) from simulated high-level liquid waste treatment.

A Study on Composition and Utilization of Waste Heat Recovery System Assuming Aerobic Liquid-composting Fermentation heat (호기성 액비화 발효열을 가정한 폐열회수시스템 구성 및 활용 연구)

  • Lim, Ryugap;Jang, Jae Kyung;Kang, Taegyung;Son, Jinkwan;Lee, Donggwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.56-66
    • /
    • 2021
  • In this study, a waste heat recovery system was devised and the performances of components incorporated to recover the heat generated during the processing of aerobic liquid-composting in a livestock manure treatment facility were analyzed. In addition, the availability of recovered heat was confirmed. The heat generated by liquid fermentation in the livestock manure treatment facility was also checked. Experimental temperatures were set at 35, 40, and 45 ℃ based on considerations of the uniformity of aerobic liquid-composting fermentation tank temperature and its operating range (34.5 ~ 43.9 ℃). Recovered heat energies from the combined heat exchanger, which consisted of PE and STS pipes, were 53.5, 65.6, 74.4 MJ/h, The heat pump of capacity 5 RT was heated at 95.6, 96.1, 98.9 MJ/h and the heating COPs of the pump were 4.53, 4.62, and 4.65, respectively. The maximum hot water production capacity of the heat exchanger assuming a fermentation tank temperature of 45 ℃ confirmed an energy supply of 56 360 kcal/day. The heating capacity of the FCU linked to the heat storage tank was 20.8 MJ/h, and the energy utilization efficiency was 96.1%. When livestock manure was dried using the FCU, it was confirmed that the initial function rate was reduced by 50.5 to 45.8 % after drying.