• 제목/요약/키워드: Liquid Radioactive Waste

검색결과 174건 처리시간 0.022초

울진 5,6호기 액체방사성폐기물 처리설비 원심분리기 성능 고찰

  • 강현태;황수동;이화석
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.196-199
    • /
    • 2005
  • The centrifuge system in liquid radwaste system(LRS) is composed of several skids including Decanter and Separator. The decanter separates the sludge over 5mm in size within liquid radwaste by centrifuge force and drops it into 55gallon drum. The separator separates the sludge over $0.1{\mu}m$ in size within the liquid radwaste processed by Decanter by centrifuge force. The process of separating the sludge from the LRS keeps the resin in Ion Exchanger from being damaged and improves the performance of Ion Exchanger, and satisfies the decontamination factor suggested in Uljin 5,6 FSAR to safety discharge into the outer environment.

  • PDF

Radiological analysis of transport and storage container for very low-level liquid radioactive waste

  • Shin, Seung Hun;Choi, Woo Nyun;Yoon, Seungbin;Lee, Un Jang;Park, Hye Min;Park, Seong Hee;Kim, Youn Jun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4137-4141
    • /
    • 2021
  • As NPPs continue to operate, liquid waste continues to be generated, and containers are needed to store and transport them at low cost and high capacity. To transport and store liquid phase very low-level radioactive waste (VLLW), a container is designed by considering related regulations. The design was constructed based on the existing container design, which easily transports and stores liquid waste. The radiation shielding calculation was performed according to the composition change of barium sulfate (BaSO4) using the Monte Carlo N-Particle (MCNP) code. High-density polyethylene (HDPE) without mixing the additional BaSO4, represented the maximum dose of 1.03 mSv/hr (<2 mSv/hr) and 0.048 mSv/hr (<0.1 mSv/hr) at the surface of the inner container and at 2 m away from the surface, respectively, for a 10 Bq/g of 60Co source. It was confirmed that the dose from the inner container with the VLLW content satisfied the domestic dose standard both on the surface of the container and 2 m from the surface. Although it satisfies the dose standard without adding BaSO4, a shielding material, the inner container was designed with BaSO4 added to increase radiation safety.

Development of the Pilot System for Radioactive Laundry Waste Treatment Using UV Photo-Oxidation Process and Reverse Osmosis Membrane

  • Park, Se-Moon;Park, Jong-Kil;Kim, Jong-Bin;Shin, Sang-Woon;Lee, Myung-Chan
    • Nuclear Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.506-511
    • /
    • 1999
  • The pilot system for radioactive liquid laundry waste was developed with treatment capacity, 1ton/hr and set up in the Yong Kwang unit #4. The system is composed of tank module, RO systems and a UV/$H_2O$$_2$photo-oxidation unit. The RO system consists of the BW unit (low-pressure RO for brackish water desalination) and the SW unit (high-pressure RO for seawater desalination). The BW unit possesses 4 RO membranes and it can reduce the feed water volume down to 1/10. This concentrated feed water can be reduced again up to 1/10 in its volume in the SW unit composed of 4 RO membranes. The UV/$H_2O$$_2$ photo-oxidation process unit was used for the detergent degradation. The operation of the pilot system was carried out and verified in its capability through the continuous operation and concentration operation using the actual liquid waste from the power plant. The design criteria and data for industrialization were yielded. The efficiency of the UV/$H_2O$$_2$ photo-oxidation process and the optimum operational procedure were evaluated. The decontamination factors for radioactive cobalt and cesium were measured. This on-site test showed the experimental result in the DF$\geq$300 and volume reduction factor$\geq$100.

  • PDF

The role of natural rock filler in optimizing the radiation protection capacity of the intermediate-level radioactive waste containers

  • Tashlykov, O.L.;Alqahtani, M.S.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3849-3854
    • /
    • 2022
  • The present work aims to optimize the radiation protection efficiency for ion-selective containers used in the liquid treatment for the nuclear power plant (NPP) cooling cycle. Some naturally occurring rocks were examined as filler materials to reduce absorbed dose and equivalent dos received from the radioactive waste container. Thus, the absorbed dose and equivalent dose were simulated at a distance of 1 m from the surface of the radioactive waste container using the Monte Carlo simulation. Both absorbed dose and equivalent dose rate are reduced by raising the filler thickness. The total absorbed dose is reduced from 7.66E-20 to 1.03E-20 Gy, and the equivalent dose is rate reduced from 183.81 to 24.63 µSv/h, raising the filler thickness between 0 and 17 cm, respectively. Also, the filler type significantly affects the equivalent dose rate, where the redorded equivalent dose rates are 24.63, 24.08, 27.63, 33.80, and 36.08 µSv/h for natural rocks basalt-1, basalt-2, basalt-sill, limestone, and rhyolite, respectively. The mentioned results show that the natural rocks, especially a thicker thickness (i.e., 17 cm thickness) of natural rocks basalt-1 and basalt-2, significantly reduce the gamma emissions from the radioactive wastes inside the modified container. Moreover, using an outer cementation concrete wall of 15 cm causes an additional decrease in the equivalent dose rate received from the container where the equivalent dose rate dropped to 6.63 µSv/h.

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • 제48권4호
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

한국산(韓國産) Vermiculite에 의(依)한 방사성동위원소(放射性同位元素) 흡착연구(吸着硏究) (Adsorption Study on the Radioactive Liquids by Korean Vermiculite)

  • 문석형
    • 대한핵의학회지
    • /
    • 제7권1호
    • /
    • pp.51-54
    • /
    • 1973
  • The use of ion-exchange resins for the treatment of radioactive wastes has many advantages, but thes eare rather expensive as compared with the Korean vermiculite. The Korean vermiculite has slightly different chemical constituents from the ones produced in other countries, and its physical properties might be applicable to the management of radioactive waste, in a small nuclear installation. The decontaminating effect of Korean vermiculite for the low-level radioactive liquid was investigated. $^{106}Ru,\;^{90}Sr,\;and\;^{137}Cs$ were utilized for the experiments. The removal rates by Korean vermiculite were calculated for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ and the removal rates increased as the weight of vermiculite in the exchange column increased. The decontaminating constants, $K_d$ of the Korean vermiculite for $^{106}Ru,\;^{90}Sr\;and\;^{137}Cs$ were 2.7, 69.3 and 263ml/g respectively. Through the results of experiments, the application of Korean vermiculite column to the treatment of low-level radioactive waste is quite feasible.

  • PDF

Electrolytic Deposition of Metal Ions Using A Liquid Cadmium Cathode

  • Shim, Joon-Bo;Ahn, Byung-Gil;Kwon, Sang-Woon;Kim, Eung-Ho;Yoo, Jae-Hyung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.337-337
    • /
    • 2004
  • As one of researches for the P & T purposes, a basic experiment on the recovery of actinide elements from the mixture with rare earth elements by means of electrorefining using a liquid cadmium cathode in the LiCl-KC1 eutectic melt was carried out. In order to examine the behaviors of electrodeposition of metal ions on a liquid electrode, recovery experiments of rare earth metals resulting from forming electrodeposits were performed by a galvanostatic electrolysis method at various current densities. A cyclic voltammetric technique was applied to determine reduction-oxidation potential of each metal element in the melt and to detect the changes of the multi component melt composition for on-line monitoring. Also, a collaboration study with RIAR was completed to test the preliminary feasibility on a recovery of actinide elements from the mixture with rare earth elements using a liquid cadmium cathode and actinide metals. Experimental results showed that the ratio of actinides to rare earths, 9: 0.5∼1 led to the rare earth content of about 5∼10 wt% in the deposit.

  • PDF

핵종 이온 광물화 처리기술의 APR 1400 발전소 액체방사성폐기물관리계통 적용 위치에 대한 고찰 (A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System)

  • 고경민;김창락
    • 방사성폐기물학회지
    • /
    • 제17권4호
    • /
    • pp.419-427
    • /
    • 2019
  • APR 1400 액체방사성폐기물관리계통 효율성 증가와 계통의 성능 개선을 위한 방안으로 핵종 이온 광물화 처리기술을 적용하는 것을 고려하였다. 핵종 이온 광물화 처리기술은 현재까지 발전소에 실제적으로 적용되진 않았지만 원자력발전소의 액체방사성폐기물에 존재하는 다양한 핵종 이온을 최소 95% 이상 선택적으로 제거 가능 하다는 것을 실험적으로 증명한 바 있다. 본 논문은 핵종 이온 광물화 처리기술의 제염율을 반영하여 기존 설계에 적용 가능성을 확인하였으며, 기존 설계를 개선할 수 있는 방안을 마련하였다. 핵종 이온 광물화 처리기술의 제염 특성과 기존의 액체방사성폐기물관리계통 설계 및 운전 경험을 고려하여 최적의 적용 위치를 결정하였다. 원자력발전 운영에 따라 발생하는 액체방사성물질이 수집되는 수집탱크에 핵종 이온 광물화 처리기술을 적용하는 것이 기존 설계의 영향이 가장 적을 것이며, 개선 효과도 가장 큰 것으로 해석되었다. 핵종 이온 광물화 처리기술이 현재의 APR 1400 발전소 또는 신규 원전에 적용될 경우 액체방사성폐기물관리계통의 운전 효율성 증가와 계통의 성능 개선이 기대된다.

배수 모니터링 액체섬광검출시스템의 프로토 타입 개발 (Development of Prototype Liquid Scintillator System for Monitoring Liquid Radioactive Waste)

  • 남욱원;선광일;공경남;김창규;이동명;이상국
    • Journal of Radiation Protection and Research
    • /
    • 제28권3호
    • /
    • pp.173-182
    • /
    • 2003
  • 베타선 방출 핵종 측정을 위한 프로토 타입(prototype) 액체섬광검출기를 개발하고 이의 특성을 분석하였다. 액체섬광계수시스템의 신호처리부는 2개의 광전자증배관(photomultiplier tube, PMT)과 동시 계수 회로를 이용하여 구성하였다. 제작한 프로토 타입 시스템의 특성 분석을 위하여 4종류의 베타 핵종 $(^3H,\;^{14}C,\;^{36}Cl,\;^{90}Sr)$에 대한 샘플을 조제하여 베타 스펙트럼을 측정하였다. 차폐체를 전혀 사용하지 않은 상태에서 측정한 4종류의 핵종에 대한 베타 스펙트럼을 구하고, 최소 검출 한계를 계산한 다음, 법적 규제치 및 계산된 검출한계와 비교하였다. 이들 대부분의 선원들은 수분이내의 측정으로 배수중 방사선물질에 대한 법적 규제치 이하로 충분히 검출 가능함을 확인하였다.

증발을 이용한 방사성 액체폐기물의 처리와 피폭선량평가 (Treatment of Radioactive Liquid Waste Using Natural Evaporator and Resulted Exposure Dose Assessment)

  • 정경환;박승국;김은한;정기정;박현수
    • Journal of Radiation Protection and Research
    • /
    • 제24권2호
    • /
    • pp.101-108
    • /
    • 1999
  • 극저준위 방사성액체폐기물 처리를 위하여 공기의 온도와 습도 및 유입 공기의 속도에 따른 증발량의 관계를 천을 이용한 강제증발실험 장치로 실험하였다. 그 결과 각각의 변수와 증발량의 상관관계를 실험식으로 도출하였다. 또한 Cs-137 을 함유한 모의폐액을 사용하여 본 장치에 대한 제염 계수를 얻은 결과 $DF=10^4$으로 나타났다. TRlGA Mark II & III 연구용 원자로 폐로시 발생되는 극저준위 방사성액체폐기물을 증발장치로 처리할 때 주변의 일반개인에 대한 연간 피폭선량을 보수적으로 평가한 결과, 유효선량 (effective dose)은 $1.01{\times}10^{-3}mSv$이고, 환경으로 배출되는 공기의 방사능 농도(Cs-137)는 $4.637{\times}10^{-14}\;{\mu}Ci/cc$ air 이다. 따라서 극저준위 방사성액체폐기물의 처리를 위하여 강제증발장치를 사용하는 것은 주민에 아무런 영향이 없음을 알 수 있었다.

  • PDF