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Background: Recently, biological adsorbents have been developed for removing radionuclides 
from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. 
However, since they can be damaged by radiation in radioactive waste, a method for estimating 
the bio-adsorbent performance as a time should consider the radiation damages in terms of 
their renewability. This paper aims to develop a simulation method that applies a deep learning 
technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents 
when inserted into liquid radioactive waste. 

Materials and Methods: A model that describes various interactions between a bio-adsorbent 
and liquid has been constructed using numerical methods to estimate the adsorption capacity of 
the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) 
simulations were conducted while considering radioactive concentrations in the adsorbent col-
umn. 

Results and Discussion: Compared with the result of the conventional method, the proposed 
method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 
score and mean absolute percentage error, respectively. Furthermore, the estimation speed is 
improved by over 30 times. 

Conclusion: Note that an artificial neural network can rapidly and accurately estimate the sur-
vival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation 
and can determine if the bio-adsorbents are reusable.

Keywords: Advection-Dispersion Equation, Langmuir Isotherm Adsorption, Radiation Dam-
age, Monte Carlo N-Particle, Artificial Neural Network
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Introduction

To decrease the radioactivity in radioactive wastes and reduce the radiation doses of 

workers during the decommissioning of nuclear power plants (NPPs), related equip-

ment and structures should be decontaminated. A large volume of liquid radioactive 

waste can be generated by decontamination processes or the disposal of various con-
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taminated materials during the operations of NPPs. Its treat-

ment and management have been a great concern in coun-

tries that have NPPs [1].

Various treatment processes can be used to dispose of liq-

uid radioactive waste generated by NPP decontaminations, 

including ion exchange, chemical precipitation, reverse os-

mosis, evaporation, filtration, and solvent extraction [2–4]. 

Recently, many methods to remove radionuclides using bio-

logical adsorbents (bio-adsorbents) have been noticed in 

terms of their advantages of high selectivity, eco-friend liness, 

and renewability [5–7]. The renewability of bio-adsorbents 

offers cost-effectiveness, but their removal performance can 

be impaired by radiation in terms of the selection of specific 

radionuclides [8, 9].

Therefore, the radionuclide removal performance and ra-

diation damage should be considered at the same time in 

order to elaborately evaluate the recovery rate of bio-adsor-

bents. Several methods can be used to evaluate the radionu-

clide removal performance for bio-adsorbents [10, 11], but 

these methods cannot efficiently evaluate radiation damage 

as a time-dependent phenomenon while considering condi-

tions that rapidly change by the decommission environment 

of NPPs. Although damages to bio-adsorbents because of ra-

diation are evaluated by particle transport codes (e.g., Monte 

Carlo N-Particle [MCNP]), the computation cost is high be-

cause estimations should be repeatably performed at each 

time step.

Recent machine learning techniques have been developed 

to evaluate complex data relationships, enabling rapid and 

accurate performance assessment [12]. A significant portion 

of this recent success can be attributed to the availability of 

large training datasets and well-designed models. However, 

it is difficult and expensive to collect datasets covering all 

possible scenarios for evaluating the bio-adsorbent perfor-

mance; hence, it is challenging to evaluate the damages of 

bio-adsorbents using a machine learning-based model.

To overcome the issues in evaluating the performance of a 

bio-adsorbent, this paper proposes a method to automati-

cally estimate the removal performance while considering 

radiation damage using an artificial neural network (ANN) 

and an advection-dispersion equation (ADE). After estab-

lishing the performance evaluation procedures, the ANN for 

radiation damage estimation is introduced while consider-

ing its high accuracy and low computing resources. After 

conducting machine learning with the datasets obtained 

through the MCNP simulation [13], the bio-adsorbent per-

formance is estimated using the proposed method. The re-

sults are compared with those of the MCNP simulation.

Materials and Methods

1. Estimation Overview
Fig. 1 shows a bio-adsorbent removal example for radio-

nuclides in liquid radioactive waste in a column that contains 

a bio-adsorbent when the liquid radioactive waste is injected 

into the top of the column, and the purified liquid is extract-

ed through the bottom. During radionuclide transport into 

the column, specific target ions are selectively captured by 

the bio-adsorbent through the diffusion process, and the rest 

move down by advection. Additionally, some reactions oc-

cur (e.g., dispersion and radioactive decay) in liquid radioac-

tive waste. Meanwhile, the bio-adsorbent desorbs the ad-

sorbed target ions and is damaged by the ionizing radiation 

of radionuclides.

The radiation damage to the bio-adsorbent is mainly gov-

erned by the radionuclides contained in the liquid and cap-

Fig. 1. Example of interactions for radionuclides between liquid and bio-adsorbents in the column under insertion of liquid radioactive waste.

Figure 1. Example of interactions for radionuclides between liquid and bio-adsorbents in the 
column under insertion of liquid radioactive waste
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tured in it. It causes a reduction in the adsorption performance 

of the bio-adsorbent. Therefore, contaminant concentrations 

of radionuclides considering the abovementioned two phas-

es obtained using a transport model should be considered to 

evaluate the time-dependent adsorption performance of bio-

adsorbents with radiation damage (Fig. 2). In this study, the 

ADE with Langmuir isotherm adsorption is introduced to 

evaluate the contaminant concentration in the liquid and 

adsorbed phases. Further, an ANN model is developed and 

applied to improve the estimation time of radiation damages 

during the ADE simulation.

2.  One-Dimensional Advection-Dispersion Equation 
with Langmuir Isotherm Adsorption

For the simulation of radionuclides captured by the bio-

adsorbent as porous adsorbent media, the following condi-

tions are assumed: (1) the velocity, temperature, and pres-

sure are constant when injected into liquid waste with one-

dimensional (1D) flows; (2) an ideal fluid behavior is followed; 

(3) no mass transfer resistance emerges between the liquid 

and adsorbed phases; and (4) the capture in the adsorbed 

phase is given by Lang muir isotherm. The desired 1D ADE 

with adsorption can be expressed as follows [14]:

Fig. 2. Process for evaluating the radioactive amount in a column 
including liquid and bio-adsorbents under insertion of liquid radioac-
tive waste.

Figure 2. Process for evaluating the radioactive amount in a column including liquid and bio-
adsorbents under insertion of liquid radioactive waste.
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following conditions are assumed: (1) the velocity, temperature, and pressure are constant when injected 

into liquid waste with 1-D flows; (2) an ideal fluid behavior is followed; (3) no mass transfer resistance 

emerges between the liquid and adsorbed phases; and (4) the capture in the adsorbed phase is given by 

Langmuir isotherm. The desired 1-D ADE with adsorption can be expressed as follows [14]: 

∂C
𝜕𝜕𝜕𝜕 +

ρb
θ
∂q
𝜕𝜕𝜕𝜕 = −𝑣𝑣 𝜕𝜕C𝜕𝜕𝜕𝜕 + 𝐷𝐷 𝜕𝜕2C

𝜕𝜕𝜕𝜕2 − 𝜆𝜆C + 𝛾𝛾(z) (1) 

where 𝜕𝜕 denotes time, 𝜕𝜕 is the spatial coordinate from up to down in this study, θ is porosity, ρb is 

bulk density (kg/m3), C is the contaminant concentration in liquid waste, q is the adsorbed amount in 

the media, 𝑣𝑣 is the linear average velocity of liquid waste (m/s), 𝐷𝐷 is the dispersion coefficient in a 

column (m2/s), 𝜆𝜆 is the decay constant from radionuclides (s-1), and γ(z) is the production term by 

insertion of liquid waste into the column. Meanwhile, the adsorption kinetics equation based on 

Langmuir isotherm is expressed as follows [14]: 

∂q
𝜕𝜕𝜕𝜕 = 𝑘𝑘1C(q𝑚𝑚𝑚𝑚𝑚𝑚 − q) − 𝑘𝑘2q (2) 

where 𝑘𝑘1 is the adsorption constant rate (s−1), 𝑘𝑘2 is the desorption constant rate (s−1), and q𝑚𝑚𝑚𝑚𝑚𝑚 is 

the adsorption capability of the media. To collect the dataset from the above hypothesis, numerical 

methods are applied to Equations (1) and (2). Equation (2) is derived as follows using an explicit finite 

difference method: 

q𝑖𝑖
𝑗𝑗+1 − q𝑖𝑖

𝑗𝑗

∆t = 𝑘𝑘1C𝑖𝑖
𝑗𝑗(𝑞𝑞max − q𝑖𝑖

𝑗𝑗) − 𝑘𝑘2q𝑖𝑖
𝑗𝑗 (3) 

Similarly, using the implicit scheme from Equation (1), Equation (4) can be expressed as follows:  
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2∆𝜕𝜕2 − 𝜆𝜆 𝐶𝐶𝑖𝑖
𝑗𝑗+1 + 𝐶𝐶𝑖𝑖
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2 + 𝛾𝛾𝑖𝑖
𝑗𝑗 

(4) 

Finally, by substituting Equation (3) into Equation (4), the following equation can be obtained: 
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2𝜃𝜃  . From Equation (5), a dataset that 

explains the interaction of the radioactive amount between the liquid waste and the bio-adsorbent in the 

column can be gathered. 

 

3. Estimation Model of Radiation Damage for Biological Adsorbents 

It is assumed that the adsorption performance depends on the number of surviving bio-adsorbents in 

the irradiated environment. Also, in a preliminary study [15], the number of damaged bio-adsorbents 

linearly varied with the radiation dose. With the assumption of the linear variation, the number of 

surviving bio-adsorbents can be negative; hence, the max(a,b) function, which replaces negative values 

with 0, was used in this study. To represent this, let 𝑛𝑛𝑖𝑖
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𝑗𝑗 and 𝑛𝑛𝑖𝑖

𝑗𝑗+1 can be expressed as follows: 
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where 𝑟𝑟𝑚𝑚 is the bio-adsorbent loss rate of radiation damage per absorbed dose (#/Gy), and ξ𝑖𝑖
𝑗𝑗 is the 

adsorbed dose by a radiation damage model (Gy). Here, the total contaminant concentration, including 

in the liquid and adsorbed phases, is utilized to estimate the adsorbed dose ξ𝑖𝑖
𝑗𝑗. Therefore, by letting 

s𝑖𝑖
𝑗𝑗 = 1 − n𝑖𝑖
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𝑗𝑗  be the survival rate, the term of q𝑚𝑚𝑚𝑚𝑚𝑚 from Equation (3) should be modified as: 
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In a previous study [15], the relationship between the absorbed dose and damages of bio-adsorbents 

were evaluated. To calculate Equation (7), the radioactive source is assumed to be uniformly located in 

each column divided for the partial damage analysis; F4 tally with the MCNP code is used for estimating 
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damaged bio-adsorbents linearly varied with the radiation 

dose. With the assumption of the linear variation, the num-

ber of surviving bio-adsorbents can be negative; hence, the 

max(a,b) function, which replaces negative values with 0, was 

used in this study. To represent this, let ni
j denote the num-

ber of surviving bio-adsorbent in the i-th cell at the j-th frame. 

The relationship between ni
j and ni

j+1 can be expressed as fol-

lows:
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In a previous study [15], the relationship between the ab-

sorbed dose and damages of bio-adsorbents were evaluated. 

To calculate Equation (7), the radioactive source is assumed 

to be uniformly located in each column divided for the par-

tial damage analysis; F4 tally with the Monte Carlo N-Particle 

code version 6 (MCNP6) code is used for estimating the ab-

sorbed dose. The dose energy function card from Interna-

tional Commission on Radiological Protection 74, which 

provides conversion coefficients for air kerma per unit flu-

ence of monoenergetic photons, is utilized to directly con-

vert the flux into the dose rate [16]. The normalized concen-

tration of each column estimated using Equation (6) is ap-

plied to the source probability as the MCNP input. In Equa-

tion (6), ξi
j is calculated by multiplying ∆t by the absorbed 

dose rate. The other input values for the MCNP simulation 

are fixed during the simulation, except for the concentration 

information in the column.

4.  Artificial Neural Network for Radiation Damage 
Estimation

The ANN, which is developed by referring to biological 

neurons, is a type of machine learning method used for pre-

diction or classification. It has many advantages, such as re-

al-time operation, adaptive learning and, the ability to easily 

analyze complex mathematical problems. Fig. 3 shows an 

ANN architecture comprising an input layer, wherein input 

features should be the information of the radioactive concen-

tration from the liquid waste and bio-adsorbent of the col-

umn; hidden layer, including a non-linear activation func-

tion; and output layer, which predicts the adsorbed dose af-

fected by the concentration information.

In this study, as illustrated in Table 1, the neural network 

consists of five fully connected layers, each activation func-

tion of the hidden layer is the “rectified linear unit (ReLU)” 

function, and the optimizer in the neural network is Adam 

with weight decay (ADAMW) [17], of which the learning rate 

and weight decay are 1× 10−3 and 1× 10−7, respectively. The 

loss function between the results of the neural network mod-

el and MCNP simulation was determined based on the mean 

squared error (MSE). A total of 500,000 normalized concen-

tration samples were randomly collected to perform the deep 

learning model and were then divided into three categories: 

400,000 training data, 50,000 validation data, and 50,000 test 

data. Using the simulation dataset, the ANN model in this 

study was trained by 1,000 epochs within 3 hours of running 

time (NVIDIA Tesla V100). The deep learning model was im-

plemented using Tensorflow 2.0 (Google LLC), supported by 

Table 1. The Hyperparameters Utilized in the Artificial Neural Net-
works

Hyperparameter Specification

Composition 5 fully connected layers (20, 30, 40, 30, 20)
Activation function ReLU
Loss function Mean squared error
Optimizer ADAMW
Learning rate/Weight decay 1×10-3/1×10-7

Epochs 1,000
Batch sizes 256

ReLU, rectified linear unit; ADAMW, Adam with weight decay.
Fig. 3. Architecture of an artificial neural network by radioactive in-
formation from Monte Carlo N-Particle (MCNP).

Figure 3. Architecture of an artificial neural network by radioactive information from MCNP.
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Python 3.6 (Python Software Foundation).

Results and Discussion

1. Simulation Results and Analysis
In this simulation, 60Co, which emits higher energy than 

other radionuclides, was selected only from in the liquid ra-

dioactive waste. It was assumed that the radionuclides were 

injected into the top of the column as the initial condition to 

run the simulation. The simulation is terminated after all the 

purified liquid waste passes through the bottom of the col-

umn.

Depending on the experimental environment (e.g., sequence 

of bio-adsorbent and type or concentration of radionuclides), 

the simulation scenario, including adsorption and radiation 

damage to bio-adsorbent such as aptamers comprising short 

sequences of artificial DNA or RNA molecules, would be sub-

ject to change [18]. The adsorption rate, desorption rate, and 

adsorption capacity of the bio-adsorbent could be determined 

under various adsorption experiments [19]. Meanwhile, the 

damage coefficient of the bio-adsorbent could be estimated 

through the Monte Carlo damage simulation code, which 

can evaluate radiation-induced DNA damage linked with 

MCNP. 

The contaminant concentration of liquid radioactive waste 

C, adsorption of bio-adsorbent q, and survival rate of bio-ad-

sorbent are defined under the condition of adsorption rate 

k1. Table 2 summarizes the bio-adsorbent loss rate of radia-

tion damage per absorbed dose ra by the present adsorption 

kinetic model with radiation damage discussed in Section 2 

and the parameters used in this study. The concentration 

values were evaluated with the length L of 5 cm, and during 

the operating time T=20 minutes, the input values are ∆t=0.01 

(min), ∆z=0.5 (cm), Ci
0 =δi0, (qmax)i

0 =0.1 (for 1≤ i≤10), v=0.49 

(cm/min), D= 0.03 (cm2/min), θ= 0.7, λ= 2.48× 10−7 (min−1), 

k2 = 1 × 10−6 (min−1), and ρb = 1.11 (g/cm3). Here, δi0 denotes 

the Kronecker delta function, which is defined as 1 when i= 0 

and 0 for all other values of i. The radius and height of the 

column should be 2.5 and 50 mm, and the column is divided 

into 10 nodes (Fig. 4). Table 3 summarizes the necessary in-

formation of the input variables for the MCNP code (e.g., 

density and molecular composition). In each MCNP simula-

tion, the number of particle histories is selected to 100,000, 

which shows a relative error of the dose under 1.5%.

Fig. 5 presents the results for the cumulative survival and 

adsorption concentration of the bio-adsorbent and contami-

nant concentration in the liquid phase at the top, middle, and 

bottom nodes in scenario #1 with liquid waste insertion, in-

cluding 60Co. From Fig. 5B, the contaminant concentration at 

the top node was initialized with a normalized concentration 

of 1.0 because of the injection of liquid radioactive waste, then 

decreased due to advection, adsorption, and dispersion, and 

Table 2. The Variation of Model Parameters under the Scenarios

Scenario
Model parameters

k1 ra

#1 1 0.5
#2 3 0.5
#3 5 0.5
#4 3 0
#5 3 1
#6 3 10
Observation C, q, s

Table 3. The Specification for the Experimental Scenario to Utilize 
MCNP Code

Scenario Specific

The number of cells 10
The density of the column material (g/cm3) 1.07
The density of the media containing bio-adsorbent  

in the column (g/cm3)
1.11

The molecular composition in the column material C8H8C4H6C3H3N
The maximum execution time (nps) 100,000

MCNP, Monte Carlo N-Particle; nps, the number of particle histories. 

Fig. 4. Monte Carlo N-Particle (MCNP) modeling of a column con-
taining some bio-adsorbents and liquid radioactive waste.

Figure 4. MCNP modeling of a column containing some bio-adsorbents and liquid radioactive 
waste.
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Fig. 5. Example of simulated results under scenario #1: (A) surviving fraction for bio-adsorbents, (B) contaminant concentration in liquid 
phase, and (C) adsorption concentration for bio-adsorbents.
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Figure 5. Example of simulated results under scenario #1: (a) surviving fraction for bio-adsorbents, 
(b) contaminant concentration in liquid phase, and (c) adsorption concentration for bio-adsorbents.
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finally converged to 0. Similarly, the concentrations at the 

middle and bottom nodes temporarily increased due to ad-

vection and, then, decreased due to advection and adsorp-

tion. From Fig. 5C, each level of adsorption concentration 

converged because the Langmuir adsorption equation was 

assumed. Then, the survival fraction of the bio-adsorbent 
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Mean absolute percentage error (MAPE):
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Coefficient of determination (R2) score: 
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where 𝑦𝑦�̂�𝑖 is the predicted value of the machine learning model, 𝑦𝑦𝑖𝑖 is the actual value of the test, which 

means the absorbed dose obtained by MCNP, �̅�𝑦 is the mean of the test value of the test, and 𝑛𝑛 is the 

number of samples. 

As the MCNP simulation is a stochastic method, the datasets include uncertainties. It is noted that the 

ANN trained with the uncertain datasets provides an average value [20]. Therefore, as a preliminary 

study, the uncertainty of the dataset is not mainly considered in this study. During the training phase of 

the ANN model, the loss functions for the training and validation data have converged to near zero, and 

overfitting has not occurred as the differences between training and validation losses were small (Fig. 

7). To evaluate the performance of the presented simulations that correspond to the presented values 

concerning the two main parameters of the model (i.e., 𝑘𝑘1 and 𝑟𝑟𝑎𝑎), four metrics are measured: MSE, 

R2 score, MAPE, and inference time. Compared with the ANN and MCNP, the results with the test data 

agree well (Table 4). The R2 score shows 99.3% accuracy and MAPE indicates 0.062% accuracy. 

Meanwhile, the average inference speed of the ANN is approximately 0.031 second per a frame, which 

is approximately 30 times faster than that of the MCNP model (i.e., 1.01 second per a frame). As 

confirmation of the replacement performance, the sample results of the simulation using the ANN model 

show that the error range with the MCNP model is up to 0.002, and the average of the errors is at the 

1×10−5 scale (Fig. 8). 
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shown in Fig. 5A is derived by calculating the radiation dam-

age induced by radioactive concentration from the liquid ra-

dioactive waste and bio-adsorbent of the column using the 

results from Fig. 5B and 5C.
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test, and n is the number of samples.

As the MCNP simulation is a stochastic method, the datas-

ets include uncertainties. It is noted that the ANN trained 

with the uncertain datasets provides an average value [20]. 

Therefore, as a preliminary study, the uncertainty of the da-

taset is not mainly considered in this study. During the train-

ing phase of the ANN model, the loss functions for the train-

ing and validation data have converged to near zero, and 

overfitting has not occurred as the differences between train-

ing and validation losses were small (Fig. 7). To evaluate the 

performance of the presented simulations that correspond 

to the presented values concerning the two main parameters 

of the model (i.e., k1 and ra), four metrics are measured: MSE, 

R2 score, MAPE, and inference time. Compared with the ANN 

and MCNP, the results with the test data agree well (Table 4). 

The R2 score shows 99.3% accuracy and MAPE indicates 0.062% 

accuracy. Meanwhile, the average inference speed of the ANN 

is approximately 0.031 second per a frame, which is approxi-

mately 30 times faster than that of the MCNP model (i.e., 1.01 

second per a frame). As confirmation of the replacement per-

formance, the sample results of the simulation using the ANN 

model show that the error range with the MCNP model is up 

to 0.002, and the average of the errors is at the 1× 10−5 scale 

(Fig. 8).

Conclusion

This study developed a method of radioactive damage es-

timation for the bio-adsorbent with the ADE using implicit 

and explicit schemes from the numerical method. Further-

more, a relatively fast ANN model was replaced with a radia-

tion transport simulation code (e.g., MCNP). The ANN mod-

el was proposed to increase accuracy and inference speed. A 

total of 500,000 random sample data were generated through 

the MCNP simulation, and machine learning was conduct-

ed. According to the simulation results, the ANN model and 

MCNP simulation are analogous in terms of the accuracy of 

99.3% and 0.062% in the R2 score and MAPE, respectively. 

The inference time can be reduced to 74 seconds, and the 

MCNP code evaluated 2,400 frames within 44 minutes. Note 

that the performance can be optimized to estimate the dam-

age from radioactive materials, and whether bio-adsorbents 

can be reused should be determined accurately and quickly 

by using the advantages of the ANN. As a further study, the 

development of bio-adsorbents would be accelerated to con-

tribute to the maintenance and utilization of decontaminant 

processes for NPPs.

As shown in the results and analyses, the method proposed 

in this study gives a clue for real-time performance evalua-

tion of the bio-adsorbents caused by irradiation during the 

time-dependent decommission process of liquid radioactive 

wastes; however, there are several limitations: (1) the uncer-

tainty of datasets obtained by MCNP simulations is not suffi-

ciently verified, (2) the proposed method cannot evaluate 

the uncertainty. Thus, the error and uncertainty should be 

evaluated for application in the decommissioning process in 

future work.
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