• Title/Summary/Keyword: Liquid Electrolyte

Search Result 259, Processing Time 0.028 seconds

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred;Hamenu, Louis;Mohammed, Latifatu;Bon, Chris Yeajoon;Kim, Sang Jun;Park, Jeong Ho;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

A Simulated Prediction for Influences of Operating Condition in an Alkaline Fuel Cell

  • Jo Jang-Ho;Yi Sung-Chul
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 1999
  • The effects of the operating conditions in AFC single cells have not been studied in detail. In this study, by using a one-dimensional isothermal model a computational simulation was conducted to investigate the effects of the initial electrolyte concentration and the operating gas pressure. According to the result, the optimum electrolyte concentration at the base-case was found to be within $3.0\~3.5$ M. The variation of the cell performance according to the electrolyte concentration was found to be caused mainly by the charge transfer resistances of both electrodes, Henry's constant and the liquid phase diffusivity of the dissolved gases. It was also found that an increase in operating pressure increased the reaction rates and the solubilities of the gases, which led to a considerable enhancement of the cell performance.

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material

  • Chae, Bum-Jin;Song, Hye Ji;Mun, Junyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2020
  • Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries (리튬금속과 고체전해질의 계면 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Effect of Electrolyte Amounts on Electrochemical Properties of Coin-Type Lithium-Ion Cells (액체전해액의 함량에 따른 리튬이온전지 코인셀의 전기화학적 특성 연구)

  • Yoon, Byeolhee;Han, Taeyeong;Kim, Seokwoo;Jin, Dahee;Lee, Yong min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Many studies on the electrochemical performance of Li secondary batteries have been obtained using coin-type cells due to the ease of assembly, low cost and ensuring reproducibility. The coin-type cell consists of a case, a gasket, a spacer disk, and a wave spring. These structural features require a greater amount of liquid electrolyte to assemble than other types of cells such as laminated cells and cylindrical cells. Nevertheless, little research has been conducted on the effect of excess liquid electrolytes on the electrochemical performances of Li secondary batteries. In this study, we investigate the effect of different amounts of electrolyte on the coin-type cells. The amount of electrolytes is adjusted to 30 and $100mg\;mAh^{-1}$. Cycle performances at room temperature ($25^{\circ}C$) and high temperature ($60^{\circ}C$) and high voltage are performed to investigate the electrochemical properties of the different amount of electrolytes. In the case of the unit cell including the electrolyte of $30mg\;mAh^{-1}$, the discharging capacity retention characteristic is excellent in comparison with the case of $100mg\;mAh^{-1}$ under the high temperature and high voltage condition. The former shows a larger increase in internal resistance than the latter, confirming that the amount of electrolyte significantly influences the discharge capacity retention characteristics of the battery.

Dye Sensitized Solar Cell using Polymer Electrolytes based on Poly(ethylene oxide) with an Ionic Liquid

  • Singh Pramod K.;Kim, Ki-Il;Rhee Hee-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.273-273
    • /
    • 2006
  • The encapsulation of volatile organic electrolytes is a major challenge in practical applications of the DSSC. Ionic liquid (IL) within polymer electrolytes is an attractive candidate for replacement. Here we used a low viscosity ionic liquid 1-ethyl 3-methylimidazolium thiocyanate in order to modify ionic conductivity (${\sigma}$) of polymer electrolyte ($PEO:Kl/l_{2}$) and hence DSSC efficiency. The doping of IL enhanced ${\sigma}$ and attained maximum (${\sigma}=7.62{\times}10^{-4}S/cm$) at 80 wt% of IL concentration. Beyond this it was harder to get stable films. XRD confirmed that the intensity of the sharp PEO crystalline peaks decreased when IL was added. The DSC studies confirmed the reduction in crystallinity by adding ionic liquid.The efficiency of solar cell using aforesaid material was 0.6 % at 1 sun irradiation.

  • PDF

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries

  • Kim, Jae-Kwang
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.168-172
    • /
    • 2018
  • This study first investigates the effect of the choice of cation on three different ionic-liquid-based gel polymer electrolytes (ILPEs) with polyimide membranes. The preparation of three ILPEs based on electrospun membranes of PI and incorporating a room-temperature ionic liquid, 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide complexed with lithium bis(trifluoromethylsulfonyl)imide, is described. ILPE-EMImTFSI has an ionic conductivity as high as $5.3{\times}10^{-3}S\;cm^{-1}$ at $30^{\circ}C$. Furthermore, it shows higher thermal stability and electrochemical oxidation stability compared to the other two ILPEs because of its stronger bonds. These results indicate that polyimide-based ILPE-EMImTFSI is a good candidate for use in high-safety rechargeable lithium metal batteries.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.