DOI QR코드

DOI QR Code

Effect of Sulfate-based Cathode-Electrolyte Interphases on Electrochemical Performance of Ni-rich Cathode Material

  • Chae, Bum-Jin (Department of Chemistry, Incheon National University) ;
  • Song, Hye Ji (Department of Chemistry, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2020.03.06
  • Accepted : 2020.06.18
  • Published : 2020.11.30

Abstract

Recently, layered nickel-rich cathode materials (NCM) have attracted considerable attention as advanced alternative cathode materials for use in lithium-ion batteries (LIBs). However, their inferior surface stability that gives rise to rapid fading of cycling performance is a significant drawback. This paper proposes a simple and convenient coating method that improves the surface stability of NCM using sulfate-based solvents that create artificial cathode-electrolyte interphases (CEI) on the NCM surface. SOx-based artificial CEI layer is successfully coated on the surface of the NCM through a wet-coating process that uses dimethyl sulfone (DMS) and dimethyl sulfoxide (DMSO) as liquid precursors. It is found that the SOx-based artificial CEI layer is well developed on the surface of NCM with a thickness of a few nanometers, and it does not degrade the layered structure of NCM. In cycling performance tests, cells with DMS- or DMSO-modified NCM811 cathodes exhibited improved specific capacity retention at room temperature as well as at high temperature (DMS-NCM811: 99.4%, DMSO-NCM811: 88.6%, and NCM811: 78.4%), as the SOx-based artificial CEI layer effectively suppresses undesired surface reactions such as electrolyte decomposition.

Keywords

References

  1. L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272-288. https://doi.org/10.1016/j.jpowsour.2012.10.060
  2. M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci. 2012, 5, 7854-7863. https://doi.org/10.1039/c2ee21892e
  3. E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, J. Power Sources 2007, 168(1), 2-11. https://doi.org/10.1016/j.jpowsour.2006.10.090
  4. J. Zheng, W. H. Kan, A. Manthiram, ACS Appl. Mater. Interfaces 2015, 7(12), 6926-6934. https://doi.org/10.1021/acsami.5b00788
  5. N. Yabuuchi, T. Ohzuku, J. Power Sources 2003, 119, 171-174. https://doi.org/10.1016/S0378-7753(03)00173-3
  6. S. Liu, L. Xiong, C. He, J. Power Sources 2014, 261, 285-291. https://doi.org/10.1016/j.jpowsour.2014.03.083
  7. Y. Chung, H.-Y. Park, S.-H. Oh, D. Y. Yoon, S.-W. Jin, D.-Y. Jang, J. M. Ko, W. I. Cho, S.-R. Lee, J. Electroceramics, 2013, 31(3-4), 316-323. https://doi.org/10.1007/s10832-013-9845-5
  8. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Cender, Science 2006, 311(5763), 977-980.
  9. C. M. Julien, A. Mauger, K. Zaghib, H. Groult, Inorganics 2014, 2(1), 132-154.
  10. D. D. MacNeil, Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2002, 149(10), A1332-A1336. https://doi.org/10.1149/1.1505633
  11. C.-C. Wang, A. Manthiram, J. Mater. Chem. A 2013, 1(35), 10209-10217. https://doi.org/10.1039/c3ta11703k
  12. J. Ahn, J. H. Kim, B. W. Cho, K. Y. Chung, S. Kim, J. W Choi, S. H. Oh, Nano Lett. 2017, 17(12), 7869-7877. https://doi.org/10.1021/acs.nanolett.7b04158
  13. H. J. Song, S. H. Jang, J. Ahn, S. H. Oh, T. Yim, J. Power Sources 2019, 416, 1-8. https://doi.org/10.1016/j.jpowsour.2019.01.050
  14. J.-Y. Hwang, C. S. Yoon, I. Belharouak, Y.-K. Sun, J. Mater. Chem. A 2016, 4(46), 17952-17959. https://doi.org/10.1039/C6TA07392A
  15. Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, Nat. Mater. 2012, 11(11), 942-947. https://doi.org/10.1038/nmat3435
  16. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed. 2015, 54(15), 4440-4457. https://doi.org/10.1002/anie.201409262
  17. M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, D. T. Major, J. Phys. Chem. C 2017, 121(41), 22628-22636. https://doi.org/10.1021/acs.jpcc.7b06122
  18. S. H. Jang, J. Mun, D.-K. Kang, T. Yim, J. Electrochem. Sci. Technol. 2017, 8(2), 162-168. https://doi.org/10.5229/JECST.2017.8.2.162
  19. B.-J. Chae, T. Yim, J. Power Sources 2017, 360, 480-487. https://doi.org/10.1016/j.jpowsour.2017.06.037
  20. S. H. Lim, W. Cho, Y.-J. Kim, T. Yim, J. Power Sources 2016, 336, 465-474. https://doi.org/10.1016/j.jpowsour.2016.11.002
  21. B.-J. Chae, T. Yim, Mater. Chem. Phys. 2018, 214, 66-72. https://doi.org/10.1016/j.matchemphys.2018.04.078
  22. B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H. A. Gasteiger, A. Garsuch, B. L. Lucht, J. Phys. Chem. C 2015, 119(21), 11337-11348. https://doi.org/10.1021/acs.jpcc.5b00072
  23. J. Pires, L. Timperman, A. Castets, J. S. Pena, E. Dumont, S. Levasseur, R. Dedryvere, M. Anouti, RSC Adv. 2015, 5(52), 42088-42094. https://doi.org/10.1039/C5RA05650K
  24. G. H. Wrodnigg, T. M. Wrodnigg, J. O. Besenhard, M. Winter, Electrochemistry Communications 1999, 1(3-4), 148-150. https://doi.org/10.1016/S1388-2481(99)00023-5
  25. G. H. Wrodnigg, J. O. Besenhard, M. Winter, J. Electrochem. Soc. 1999, 146(2), 470-472. https://doi.org/10.1149/1.1391630
  26. K. J. Nelson, J. Xia, J. R. Dahn. J. Electrochem. Soc. 2014, 161(12), A1884-A1889. https://doi.org/10.1149/2.0791412jes
  27. J. Xia, J. E. Harlow, R. Petibon, J. C. Burns, L. P. Chen, J. R. Dahn, J. Electrochem. Soc. 2014, 161(4), A547-A553.
  28. J. Choi, A. Manthiram, Electrochem. Solid-State Lett. 2005, 8(8), C102-C105. https://doi.org/10.1149/1.1943567
  29. H.-J. Noh, S. Youn, C. S. Yoon, Y.-K. Sun, J. Power Sources 2013, 233, 121-130. https://doi.org/10.1016/j.jpowsour.2013.01.063
  30. A. Calborean, F. Martin, D. Marconi, R. Turcu, I. E. Kacso, L. Buimaga-Iarinca, F. Graur, I. Turcu, PMater. Sci. Eng. C. 2015, 57, 171-180. https://doi.org/10.1016/j.msec.2015.07.042
  31. J. Baltrusaitis, D. M. Cwiertny, V. H. Grassian, Phys. Chem. Chem. Phys. 2007, 9(41), 5542-5554. https://doi.org/10.1039/b709167b
  32. Z. Huang, Q. Lu, J. Wang, X. Chen, X. Mao, Z. He, PLoS One 2017, 12(8), e0183617. https://doi.org/10.1371/journal.pone.0183617
  33. J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, J. Zhao, Phys. Chem. Chem. Phys. 2015, 17(47), 32033-32043. https://doi.org/10.1039/c5cp05319f
  34. D. R. Gallus, R. Schmitz, R. Wagner, B. Hoffmann, S. Nowak, I. Cekic-Laskovic, R. W. Schmitz, M. Winter, Electrochim. Acta 2014, 134, 393-398. https://doi.org/10.1016/j.electacta.2014.04.091

Cited by

  1. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries vol.86, 2020, https://doi.org/10.1016/j.jmst.2021.01.037