• Title/Summary/Keyword: Liquid Electrolyte

Search Result 261, Processing Time 0.029 seconds

Charging of an Ionic Liquid Droplet in a Dielectric Medium (비전도성 매질 내 이온성 액체 액적의 충전 현상)

  • Im, Do Jin
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.354-358
    • /
    • 2014
  • Ionic liquid (IL) is a salt presents in a liquid form at room temperature. Recently, it attracts huge attention due to its possibilities as a clean solvent, electrolyte, and catalyst. In the present work, the charging behavior of six different ILs were investigated using droplet contact charging phenomenon in a dielectric medium. Basically, the charging of an IL droplet can be explained by a perfect conductor theory. However, there were several different features depending on the species of ions of ILs, which requires rigorous molecular level modeling of charge transport through electrochemical reaction of IL. We hope the present results contribute to build up fundamental understanding of electrochemical charge transport of IL.

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries (리튬 이차전지용 고체전해질 개발 동향)

  • Suh, Soon-Sung;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.

Preparation and Characterization of Chemical Gel Based on [Epoxy/PEG/PVdF-HFP] Blend for Lithium Polymer Battery Applications ([Epoxy/PEG/PVdF-HFP] 복합체를 이용한 리튬고분자전지용 화학겔의 제조 및 분석)

  • Kim, Joo-Sung;Seo, Jeong-In;Bae, Jin-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.544-550
    • /
    • 2009
  • In this study, we have designed [Epoxy/PEG] polymer gel electrolyte systems by thermal curing the mixtures of epoxy, PEG, imidazole catalyst, and a plasticizer of 1:1 ethylene carbonate and propylene carbonate in the presence of $LiPF_6$ salt. In order to enhance the poor mechanical property of the Corresponding [Epoxy/PEG] gel electrolyte PVdF-HFP was incorporated into the system. The ionic conductivities of the polymer gel electrolytes were related to the amount of PVdF-HFP in blends as well as the amount of liquid electrolyte. The optimized gel system showed room-temperature conductivities of $2.56\times10^{-3}S/cm$.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries (리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성)

  • Kim, Il Jin;Kim, Ki Su;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-309
    • /
    • 2020
  • In this study, a series of ionic liquids based electrolytes for lithium batteries were prepared by mixing the anion functionalized ionic liquid, [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite), with the lithium salt, LiTf2N (lithium bis(trifluoromethanesulfonyl)imide), and the concentration of lithium salt was varied between 0 and 3.0 molar ratio. We observed the ionic mixtures became opaque and spontaneously aggregated to form a thermotropic ionic liquid crystal. Extensive spectroscopic examinations of the ionic liquid crystals were carried out to investigate their self-organized structures and the ion transport behavior depending on the concentration of lithium salt. An increase in the ionic conductivity was observed for the ionic liquid crystals related to the ability to form ion diffusion pathways along the ordered structures, resulting in improved electrochemical performances of lithium batteries.

Investigation on the Preparation and Electrical Conductivity of $CeO_2$-System Solid Electrolytes ($CeO_2$계 복합산화물 고체 전해질 제조와 전기전도 특성에 관한 연구)

  • ;dladydan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.155-162
    • /
    • 1995
  • Solid oxide electrolytes of the MCe1-xGdxO3-x/2 (M: Ba, Mg. x=0.0-0.20) system were prepared using powders synthesized by the "liquid mix" method and calcined from the cross-linked polyacrylic polymer. The specimens were analyzed using XRD and SEM with EDX, and the sintering behavior of the electrolytes and their electrical conductivity were also studied. Although Mg-cerate is relatively inferior to Ba-cerate in the sinterability and chemical homogenity(EDX analysis data), both the Ba- and the Mg-cerate electrolytes at 80$0^{\circ}C$ show their maximum conductivities at x=0.10 and their values are in the same order of magnitude, i.e., 3.5$\pm$0.17.10-2(ohm.cm)-1.ohm.cm)-1.

  • PDF

Characteristics and Dynamic Compensation Modeling of Liquid-Based Tilt Sensor (액체저항경사계의 특성과 동적모델링)

  • Song, Mu-Seok;Ahn, Ja-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.73-79
    • /
    • 2005
  • The characteristics of a tilt sensor utilizing the resistance change of an electrolyte associated with inclination is investigated, and a dynamic compensation modeling is proposed to make the real-time measurement of the absolute slope possible even with sporadically dynamic motion. Although the proposed system is small, economical and accurate for quasi-steady slope measurement, since it contains a freesurface the evolution of the liquid surface that has no direct relation to the real slope must be excluded for any rapid rotations or translations. For various artificial motions the response of the sensor is analyzed and simplified modeling equations are proposed.

Physical and Electrochemical Properties of Polyaniline-Ionic Liquid Composite (폴리아닐린-이온성 액체 복합체의 물리적전기화학적 특성)

  • Bang, Joo-Yong;Jeong, Woo-Sung;Park, Hyung-Soon;Chung, Kyung-Ho;Nath, Narayan Chandra Deb;Lee, Jae-Joon;Cha, Eun-Hee;Lee, Jae-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.181-185
    • /
    • 2010
  • Polyaniline-ionic liquid composite was prepared and investigated its physical and electrochemical properties. The quasi-solidification was presented in imidazolium-based ionic liquid (1-methly-3-propylimidazolium iodide, PMI-I) containing above 30 wt% of polyaniline (emeraldine base), which exhibited around 80% decrease of conductivity compared to pristine ionic liquid, resulting in fibril structure trough ${\pi}-{\pi}$ self-assembled of imidazolium aromatic ring of ionic liquid on polyaniline framework.

Electrochemical Characteristics of Supercapacitor Using Ionic Liquid Electrolyte (Supercapacitor용 이온성 액체 전해질의 전기화학적 특성)

  • Kim, Sang-Gil;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.201-207
    • /
    • 2011
  • Supercapacitor has been studied actively as one of the most promising electrochemical energy storage system for a wide range of applications. To increase the energy density of supercapacitor, the introduction of ionic liquids is required. In this study, two types of EMI-$BF_4$ based on quaternary imidazolium salt were prepared with quaternary reaction and anion exchange. The structural characterization and thermal stability were analyzed by nuclear magnetic resonance($^1H$-NMR) and thermogravimetric analysis(TGA), respectively. Thermal stability of the EMI-$BF_4$ using TGA confirmed that, after heat treatment, the decomposition temperature of EMI-$BF_4$ was increased. Supercapacitors were fabricated with synthesized and commercial ionic liquids, and charge/discharge characteristics were also investigated. The capacity of supercapacitor, for synthesized and commercial EMI-$BF_4$ were determined to be 0.067 F and 0.073 F respectively, by means of charge/discharge test.