DOI QR코드

DOI QR Code

Physical and Electrochemical Properties of Polyaniline-Ionic Liquid Composite

폴리아닐린-이온성 액체 복합체의 물리적전기화학적 특성

  • Bang, Joo-Yong (Probiond Co., Ltd.) ;
  • Jeong, Woo-Sung (Probiond Co., Ltd.) ;
  • Park, Hyung-Soon (Probiond Co., Ltd.) ;
  • Chung, Kyung-Ho (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Nath, Narayan Chandra Deb (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee, Jae-Joon (Department of Advanced Applied Science & Department of Advanced Technology Fusion, Konkuk University) ;
  • Cha, Eun-Hee (Research Center for Convergence Technology, Hoseo University) ;
  • Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University)
  • Received : 2010.07.14
  • Accepted : 2010.07.29
  • Published : 2010.08.28

Abstract

Polyaniline-ionic liquid composite was prepared and investigated its physical and electrochemical properties. The quasi-solidification was presented in imidazolium-based ionic liquid (1-methly-3-propylimidazolium iodide, PMI-I) containing above 30 wt% of polyaniline (emeraldine base), which exhibited around 80% decrease of conductivity compared to pristine ionic liquid, resulting in fibril structure trough ${\pi}-{\pi}$ self-assembled of imidazolium aromatic ring of ionic liquid on polyaniline framework.

전도성 고분자로 널리 알려진 폴리아닐린과 액체전해질의 핵심 재료인 이온성 액체와의 복합체를 형성시키고 이들의 물리적, 전기화학적인 특성을 조사되었다. 이미다졸늄 이온성 액체 (1-methyl-3-propylimidazolium iodide, PMI-I)에 비전도성 폴리아닐린 (Emeraldine Base)을 30 wt%이상 첨가하였을 때 준고형화 현상이 나타났고, 이온성 액체의 이미다졸늄 양이온의 방향족 고리와 폴리아닐린의 벤족기와의 ${\pi}-{\pi}$ 자기상호조립에 의한 약한 도핑작용을 통해 섬유상 구조를 나타내었으며, 전도도의 변화율은 80%이상 유지하였다.

Keywords

References

  1. M. Gratzel ‘Dye-sensitized solar cell’ J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  2. S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’, Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  3. B. O’Regan and M. Grätzel, ‘A low-cost, high efficiency solar cell based on dye-sensitized colloidal $TiO_2$ film’, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  4. S. Noda, K. Nagano, E. Inoue, T. Egi, T. Nakashima, N. Imawaka, M. Kanayama, S. Iwata, K. Toshima, K. Nakada, and K. Yoshino, ‘Development of large size dye-sensitized solar cell modules with high temperature durability’, Syn. Metals, 159, 2355 (2009). https://doi.org/10.1016/j.synthmet.2009.10.002
  5. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Gratzel, ‘Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells’, J. Am. Chem. Soc., 125, 1166 (2003). https://doi.org/10.1021/ja029294+
  6. E. Stathatosa, P. Lianos,V. Jovanovski, and B. Orel, ‘Dyesensitized photoelectrochemical solar cells based on nanocomposite organic-inorganic materials’, J. Photochem. Photobio. A: Chem., 169, 57 (2005). https://doi.org/10.1016/j.jphotochem.2004.06.007
  7. Z. Huo, S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan, and X. Fang, ‘Nanocomposite gel electrolyte with large enhanced charge transport porperties of an I3-/I- redox couple for quasi-solid-state dye-densitized solar cell’, Solar Energy Mater. Solar Cells, 91, 1959 (2007). https://doi.org/10.1016/j.solmat.2007.08.003
  8. K. Lee, S. Cho, S. H. Park, A. J. Heeger, C. W. Lee, and S. H. Lee, ‘Metallic transport in polyaniline’, Nature, 441, 65 (2006). https://doi.org/10.1038/nature04705
  9. S. Y. Cha, Y. G. Lee, M. S. Kang, and Y. S. Kang, ‘Correlation between ion conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte’, J. Photochem. Photobio. A. Chem., 211, 193 (2010). https://doi.org/10.1016/j.jphotochem.2010.02.014