• 제목/요약/키워드: Liquefaction strength of soil

검색결과 57건 처리시간 0.019초

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

기존의 액상화 평가기법 밀 그 적용성에 관한 연구 (A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones)

  • 박인준;신윤섭;최재순;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF

준설매립지반의 세립토가 액상화 강도에 미치는 영향 (Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land)

  • 김종국;윤원섭;박상준;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

층상지반에 대한 액상화 평가방법 및 분석 (Analysis and Evaluation of the Liquefaction on Layered Soil)

  • 이상훈;유광훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.28-35
    • /
    • 2001
  • Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site fur this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed & Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. Seismic input motion used fur the assessment of liquefaction is the artificial time history compatible with the US NRC regulatory Guider .60. Assessment results of the liquefaction are validated by analyzing to the other typical soil fecundations which can show the effects of foundation depth and soil data.

  • PDF

Liquefaction and post-liquefaction behaviour of a soft natural clayey soil

  • Kheirbek-Saoud, Siba;Fleureau, Jean-Marie
    • Geomechanics and Engineering
    • /
    • 제4권2호
    • /
    • pp.121-134
    • /
    • 2012
  • The paper presents the results of identification, monotonous and cyclic triaxial tests on a potentially liquefiable soil from the Guadeloupe island. The material is a very soft clayey soil whose susceptibility to liquefaction is not clear when referring to index properties such as grain size distribution, plasticity, etc. The classifications found in the literature indicate that the material has rather a "clay-like" behaviour, i.e., is not very susceptible to liquefaction, but its properties are very close to the threshold values given by the authors. Cyclic triaxial tests carried out on the material under different conditions show that liquefaction is possible for a relatively important level of cyclic deviator or number of cycles. The second part of the paper is devoted to the study of the recovery of the soil after liquefaction and possibly reconsolidation. For the specimens tested without reconsolidation, that simulated the soil immediately after an earthquake, the recovery is nearly non-existent but the drop in pore pressure during extension results in a small available strength. On the contrary, after reconsolidation, the increase in strength of the liquefied specimens is quite large, compared to the initial state, but with unchanged failure envelopes.

실지진하중의 진동삼축시험에 기초한 액상화 저항강도 산정 (Evaluation of Liquefaction Resistance Strength based on the Cyclic Triaxial Tests using Real Earthquake Loading)

  • 심재욱;김수일;최재순;박근보
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.67-74
    • /
    • 2002
  • An experimental assessment on the dynamic behavior of saturated sand which can consider the irregular characteristics of earthquakes was proposed. The equivalent uniform stress concept presented by Seed and Idriss has been applied to evaluate the liquefaction resistance strength to simplify earthquake loading. However, it was known that the liquefaction resistance strength of soil based on the equivalent uniform stress concept can't exactly mirror the dynamic characteristics of the irregular earthquake motion. In this study, estimation of the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between excess pore water pressure and the earthquake characteristics such as magnitude or duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.

  • PDF

진동삼축시험에 기초한 액상화 평가 (Assessment of Liquefaction Potential based on the Cyclic Triaxial Test)

  • 최재순
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.77-84
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing earthquake induced shear stress to the liquefaction strength of the soil. In this research a modified method based on Seed and Idriss theory is developed for evaluating liquefaction strength of Jumunjon sand(Korean standard sand). Also the factors affecting liquefaction strenght such as cyclic shear stress amplitude and relative density are investigated and verified by using cyclic triaxial test. From the result the new relationships between cyclic shear stress ratio and number of load cycles are proposed for evaluating liquefaction strength under moderated magnitude(M=6.5) of earthquake.

  • PDF

낙동강 모래의 세립분의 소성지수에 따른 비배수 반복 전단강도 (Undrained Cyclic Shear strength of Nak-dong River sands according to Plasticity Index of fine-grained soils)

  • 김성호;김영수;박성식;신지섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.68-75
    • /
    • 2010
  • Around the Nakdong River which is one part of the repairing business of 4 Grand Rivers currently being constructed, sandy ground is distributed throughout the wide area. Many civil engineering structures such as small and medium sized dams, flood control basins, and redevelopment of reservoirs and retention reservoirs are scheduled to be constructed, so the prevention measures for liquefaction are surely needed. To identify such liquefaction, a lot of factor affecting the strength of liquefaction were studied through laboratory investigation. Most of the conducted study was about clean sands, but in the case of the real ground the sand can exist not in the clean conditions but in the conditions mostly including sand of fine grained soil. The sand of fine grained soil has become a significant factor to assess liquefaction because many cases of liquefaction happened in the silty and clayer soil. In this study, un-drained tests of plasticity index of fine grained particles were conducted with the sands from Nakdong River. In result, the study shows that dynamic shear strength characteristics differ according to the plasticity index.

  • PDF

Investigation of the liquefaction potential of fiber-reinforced sand

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.503-513
    • /
    • 2019
  • In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.