• Title/Summary/Keyword: Lipschitz domain.

Search Result 18, Processing Time 0.024 seconds

Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain

  • Aslan, Resat;Izgi, Aydin
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.467-484
    • /
    • 2022
  • In this work, we define bivariate Bernstein-Kantorovich type operators on a triangular domain and obtain some approximation results for these operators. We start off by computing some moment estimates and prove a Korovkin type convergence theorem. Then, we estimate the rate of convergence using the partial and complete modulus of continuity, and derive a Voronovskaya-type asymptotic theorem. Further, we calculate the order of approximation with regard to the Peetre's K-functional and a Lipschitz type class. In addition, we construct the associated GBS type operators and compute the rate of approximation using the mixed modulus of continuity and class of the Lipschitz of Bögel continuous functions for these operators. Finally, we use the two operators to approximate example functions in order to compare their convergence.

Wavelet Analysis of Visualized Image (가시화 영상의 웨이브렛 해석)

  • Park, Young-Sik;Kim, Okug-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.143-148
    • /
    • 2007
  • The many studies have been proceeding to express accurately the feature of a sudden signal and a uncertain system in the image processing field. It is well know that Fourier Transform is widely used for frequency analysis of any signal. However, The frequency transform domain is not used for expressing the sudden signal change and non-stationary signal at the time-axis by this method. This paper describes of image analysis by discrete wavelet transform. Wavelet modulus maxima on transformed plane gives the Lipschitz exponent expression, which is useful to examine the characteristics of signal or the edge of an image. It is possible to reconstruct the original image only using the few maxima points. The fractal analysis is applied as an examples. The visualized image of oil flow on a ship model is analyzed. The fractal variable is obtained by the maxima analysis and the good results on the exprement is obtained by the visualized image analysis.

  • PDF

Maxima Analysis from Visualized Image based on Multi-Resolution Analysis (다중해상도 웨이브렛 해석을 기본으로 한 가시화 영상의 극대값 해석)

  • Park, Young-Sik;Kim, Og-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this paper we propose a fractal analysis based on the discrete wavelet transform. It is well known that Fourier Transform is widely used for frequency analysis of random signal. However, the frequency domain is not used for expressing the sudden signal change and non-stationary signal at the time-axis by this method. Maximum value in the wavelet modules can be expressed by the Lipschitz exponent, which is useful to represent the characteristics of signal or the edge of an image. It is possible to reconstruct the original image only by using the few maximum points. The v possible image It iusing oil was acquired to interpret the maximum value. ufter that, it was applied to the v possible image of a ship model. In addition, the fractal dimens by by the conlapse process of the sediment particle was examined. In this paper, the fractal dimens by has been obtained by the maximum value and the experiment obtained from the visualized image also acquired the same result as existing methods.

A GENERALIZED HURWITZ METRIC

  • Arstu, Arstu;Sahoo, Swadesh Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1127-1142
    • /
    • 2020
  • In 2016, the Hurwitz metric was introduced by D. Minda in arbitrary proper subdomains of the complex plane and he proved that this metric coincides with the Poincaré's hyperbolic metric when the domains are simply connected. In this paper, we provide an alternate definition of the Hurwitz metric through which we could define a generalized Hurwitz metric in arbitrary subdomains of the complex plane. This paper mainly highlights various important properties of the Hurwitz metric and the generalized metric including the situations where they coincide with each other.

HARDY-LITTLEWOOD PROPERTY WITH THE INNER LENGTH METRIC

  • Kim, Ki-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • A result of Hardy and Littlewood relates Holder continuity of analytic functions in the unit disk with a bound on the derivative. Gehring and Martio extended this result to the class of uniform domains. We call it the Hardy-Littlewood property. Langmeyer further extended their result to the class of John disks in terms of the inner length metric. We call it the Hardy-Littlewood property with the inner length metric. In this paper we give several properties of a domain which satisfies the Hardy-Littlewood property with the inner length metric. Also we show some results on the Holder continuity of conjugate harmonic functions in various domains.

AN ERROR ANALYSIS OF THE DISCRETE GALERKIN SCHEME FOR NONLINEAR INTEGRAL EQUATIONS

  • YOUNG-HEE KIM;MAN-SUK SONG
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.423-438
    • /
    • 1994
  • We employ the Galerkin method to solve the nonlinear Urysohn integral equation (1.1) x(t) = f(t) + $∫_{D}$ k(t, s, x(s))ds (t $\in$ D), where D is a bounded domain in $R^{d}$ , the function f and k are known and x is the solution to be determined. We assume that D has a locally Lipschitz boundary ([1, p. 67]). We can rewrite (1.1) in operator notation as x = f + Kx. We consider (1.1) as an operator equation on $L_{\infty$}$(D) and assume that K is defined on the closure $\Omega$ of a bounded open set $\Omega$$L_{\infty}$(D). Throughout our analysis we put the following assumptions on (1.1).(omitted)(1.1).(omitted)

  • PDF

REGULARITY AND MULTIPLICITY OF SOLUTIONS FOR A NONLOCAL PROBLEM WITH CRITICAL SOBOLEV-HARDY NONLINEARITIES

  • Alotaibi, Sarah Rsheed Mohamed;Saoudi, Kamel
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.747-775
    • /
    • 2020
  • In this work we investigate the nonlocal elliptic equation with critical Hardy-Sobolev exponents as follows, $$(P)\;\{(-{\Delta}_p)^su={\lambda}{\mid}u{\mid}^{q-2}u+{\frac{{\mid}u{\mid}^{p{^*_s}(t)-2}u}{{\mid}x{\mid}^t}}{\hspace{10}}in\;{\Omega},\\u=0{\hspace{217}}in\;{\mathbb{R}}^N{\backslash}{\Omega},$$ where Ω ⊂ ℝN is an open bounded domain with Lipschitz boundary, 0 < s < 1, λ > 0 is a parameter, 0 < t < sp < N, 1 < q < p < ps where $p^*_s={\frac{N_p}{N-sp}}$, $p^*_s(t)={\frac{p(N-t)}{N-sp}}$, are the fractional critical Sobolev and Hardy-Sobolev exponents respectively. The fractional p-laplacian (-∆p)su with s ∈ (0, 1) is the nonlinear nonlocal operator defined on smooth functions by $\displaystyle(-{\Delta}_p)^su(x)=2{\lim_{{\epsilon}{\searrow}0}}\int{_{{\mathbb{R}}^N{\backslash}{B_{\epsilon}}}}\;\frac{{\mid}u(x)-u(y){\mid}^{p-2}(u(x)-u(y))}{{\mid}x-y{\mid}^{N+ps}}dy$, x ∈ ℝN. The main goal of this work is to show how the usual variational methods and some analysis techniques can be extended to deal with nonlocal problems involving Sobolev and Hardy nonlinearities. We also prove that for some α ∈ (0, 1), the weak solution to the problem (P) is in C1,α(${\bar{\Omega}}$).