• Title/Summary/Keyword: Lipschitz Condition

Search Result 82, Processing Time 0.02 seconds

SOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Serenbay, Sevilay Kirci
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.483-501
    • /
    • 2018
  • In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: $$T_{\eta}(f;x,y)={\int}{\int\limits_{{\mathbb{R}^2}}}K_{\eta}(t-x,\;s-y,\;f(t,s))dsdt,\;(x,y){\in}{\mathbb{R}^2},\;{\eta}{\in}{\Lambda}$$, where the function $f:{\mathbb{R}}^2{\rightarrow}{\mathbb{R}}$ is Lebesgue measurable on ${\mathbb{R}}^2$ and ${\Lambda}$ is a non-empty set of indices. Further, we provide an example to support these theoretical results.

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF A PERIODIC SOLUTION TO DISCRETE-TIME COHEN-GROSSBERG BAM NEURAL NETWORKS WITH DELAYS

  • Zhang, Zhengqiu;Wang, Liping
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.727-747
    • /
    • 2011
  • By employing coincidence degree theory and using Halanay-type inequality technique, a sufficient condition is given to guarantee the existence and global exponential stability of periodic solutions for the two-dimensional discrete-time Cohen-Grossberg BAM neural networks. Compared with the results in existing papers, in our result on the existence of periodic solution, the boundedness conditions on the activation are replaced with global Lipschitz conditions. In our result on the existence and global exponential stability of periodic solution, the assumptions in existing papers that the value of activation functions at zero is zero are removed.

A NOTE ON EXPONENTIAL ALMOST SURE STABILITY OF STOCHASTIC DIFFERENTIAL EQUATION

  • Mao, Xuerong;Song, Qingshuo;Yang, Dichuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2014
  • Our goal is to relax a sufficient condition for the exponential almost sure stability of a certain class of stochastic differential equations. Compared to the existing theory, we prove the almost sure stability, replacing Lipschitz continuity and linear growth conditions by the existence of a strong solution of the underlying stochastic differential equation. This result is extendable for the regime-switching system. An explicit example is provided for the illustration purpose.

GENERALIZED SOLUTION OF THE DEPENDENT IMPULSIVE CONTROL SYSTEM CORRESPONDING TO VECTOR-VALUED CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon;Ryu, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.229-247
    • /
    • 2000
  • This paper is concerned with the impulsive Cauchy problem where the control function u is a possibly discontinuous vector-valued function with finite total variation. We assume that the vector fields f, $g_i$(i=1,…, m) are dependent on the time variable. The impulsive Cauchy problem is of the form x(t)=f(t,x) +$\SUMg_i(t,x)u_i(t)$, $t\in$[0,T], x(0)=$\in\; R^n$, where the vector fields f, $g_i$ : $\mathbb{R}\; \times\; \mathbb{R}\; \longrightarrow\; \mathbb(R)^n$ are measurable in t and Lipschitz continuous in x, If $g_i's$ satisfy a condition that $\SUM{\mid}g_i(t_2,x){\mid}{\leq}{\phi}$ $\forallt_1\; <\; t-2,x\; {\epsilon}\;\mathbb{R}^n$ for some increasing function $\phi$, then the imput-output function can be continuously extended to measurable functions of bounded variation.

  • PDF

Estimation of error variance in nonparametric regression under a finite sample using ridge regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1223-1232
    • /
    • 2011
  • Tong and Wang's estimator (2005) is a new approach to estimate the error variance using least squares method such that a simple linear regression is asymptotically derived from Rice's lag- estimator (1984). Their estimator highly depends on the setting of a regressor and weights in small sample sizes. In this article, we propose a new approach via a local quadratic approximation to set regressors in a small sample case. We estimate the error variance as the intercept using a ridge regression because the regressors have the problem of multicollinearity. From the small simulation study, the performance of our approach with some existing methods is better in small sample cases and comparable in large cases. More research is required on unequally spaced points.

Control of Cyber-Physical Systems Under Cyber-Attacks (사이버공격에 강인한 사이버물리시스템의 제어)

  • Lee, Tae H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.269-275
    • /
    • 2019
  • This paper addresses the control problem of cyber-physical systems under controller attack. A novel discontinuous Lyapunov functionals are employed to fully utilize sampled-data pattern which characteristic is commonly appeared in cyber-physical systems. By considering the limited resource of networks, cyber-attacks on the controller are considered randomly occurring and are described as an attack function which is nonlinear but assumed to be satisfying Lipschitz condition. Novel criteria for designing controller with robustness for cyber-attacks are developed in terms of linear matrix inequality (LMI). Finally, a numerical example is given to prove the usefulness of the proposed method.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

HYERS-ULAM STABILITY OF FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSE

  • Dumitru Baleanu;Banupriya Kandasamy;Ramkumar Kasinathan;Ravikumar Kasinathan;Varshini Sandrasekaran
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.967-982
    • /
    • 2023
  • The goal of this study is to derive a class of random impulsive non-local fractional stochastic differential equations with finite delay that are of Caputo-type. Through certain constraints, the existence of the mild solution of the aforementioned system are acquired by Kransnoselskii's fixed point theorem. Furthermore through Ito isometry and Gronwall's inequality, the Hyers-Ulam stability of the reckoned system is evaluated using Lipschitz condition.

Strong Convergence of a Bregman Projection Method for the Solution of Pseudomonotone Equilibrium Problems in Banach Spaces

  • Olawale Kazeem Oyewole;Lateef Olakunle Jolaoso;Kazeem Olalekan Aremu
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.69-94
    • /
    • 2024
  • In this paper, we introduce an inertial self-adaptive projection method using Bregman distance techniques for solving pseudomonotone equilibrium problems in reflexive Banach spaces. The algorithm requires only one projection onto the feasible set without any Lipschitz-like condition on the bifunction. Using this method, a strong convergence theorem is proved under some mild conditions. Furthermore, we include numerical experiments to illustrate the behaviour of the new algorithm with respect to the Bregman function and other algorithms in the literature.

MATHEMATICAL ANALYSIS OF CONTACT PROBLEM WITH DAMPED RESPONSE OF AN ELECTRO-VISCOELASTIC ROD

  • LAHCEN OUMOUACHA;YOUSSEF MANDYLY;RACHID FAKHAR;EL HASSAN BENKHIRA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.305-320
    • /
    • 2024
  • We consider a mathematical model which describes the quasistatic contact of electro-viscoelastic rod with an obstacle. We use a modified Kelvin-Voigt viscoelastic constitutive law in which the elasticity operator is nonlinear and locally Lipschitz continuous, taking into account the piezoelectric effect of the material. We model the contact with a general damped response condition. We establish a local existence and uniqueness result of the solution by using arguments of time-dependent nonlinear equations and Schauder's fixed-point theorem and obtain a global existence for small enough data.