• Title/Summary/Keyword: Lipid Metabolism Genes

Search Result 211, Processing Time 0.03 seconds

Gene Expression Analysis of Phenylbutazone-induced Liver Damage in Mice (페닐부타존에 의해 간손상이 유발된 생쥐의 유전자 발현 분석)

  • Lee Eun-Ju;Jeong In-Hye;Kim Han-Na;Chung Hee-Kyoung;Kong Gu;Kang Kyung-Sun;Yoon Byung-Il;Lee Byeong-Hoon;Lee Mi-Ock;Kim Ju-Han;Kim Hyung-Lae
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.87-93
    • /
    • 2006
  • The KFDA (Korea Food & Drug Administration) has performed a collaborative toxico-genomics project since 2003. Its aim is to construct a toxicologenomic database of 12 hepatotoxic compounds from mice livers. Phenylbutazone which is non-steroidal anti-inflammatory drug was assigned. It was administered at low (0.0238 mg/kg) and at high (0.238 mg/kg) dose (5 mice per group) orally to the postnatal 6 weeks ICR mice, then the serum and liver were collected at the indicated time (6, 24 and 72 h) after administration. Serum biochemical markers for liver toxicity were measured and histopathologic studies also were carried out. The gene expression profiling was carried out by using Applied Biosystems 1700 Full Genome Expression Mouse. The 2-way ANOVA was used to find genes that reflected phenylbutazone-induced acute toxicity or dose-dependant changes. By self-organization maps (SOM), we identified groups with unique gene expression patterns, some of them are supposed to be related to phenylbutazone induced toxicity, including lipid metabolism abnormality, oxidative stress, cell death and cytoskeleton destruction.

The Effects of Docosahexaenoic Acid Oil and Soybean Oil on the Expression of Lipid Metabolism Related mRNA in Pigs

  • Liu, B.H.;Wang, Y.C.;Kuo, C.F.;Cheng, W.M.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1451-1456
    • /
    • 2005
  • To study the acute effect of dietary docosahexaenoic acid (DHA, $C_{22:6}$) on the expression of adipocyte determination and differentiation-dependent factor 1 (ADD1) mRNA in pig tissues, weaned, crossbred pigs (28 d of age) were fed with either 10% (on as-fed basis) tallow (high stearic acid), soybean oil (high linoleic acid), or high DHA algal oil for 2 d. The plasma and liver DHA reflected the composition of the diet. The adipose tissue and skeletal muscle DHA did not reflect the diet in the short term feeding. The results also showed that the diet containing 10% algal DHA oil significantly decreased the total plasma cholesterol (39%) and triacylglycerol (TG; 46%) in the pigs. Soybean oil significantly decreased plasma TG (13.7%; p<0.05), but did not have an effect on plasma cholesterol. The data indicate that different dietary fatty acid compositions have different effects on plasma lipids. The ADD1 mRNA was decreased (p<0.05) in the liver of DHA oil-treated pigs compared with the tallow-treated pigs. The diets did not have significant effect on the ADD1 mRNA in adipose tissue. Addition of algal DHA oil in the diet increased acyl CoA oxidase (ACO) mRNA concentration in the liver, suggesting that dietary DHA treatment increases peroxisomal fatty acid oxidation in the liver. However, dietary soybean oil supplementation did not affect mRNA concentrations of ADD1 or ACO in the tissues of pigs. Because ADD1 increases the expression of genes associated with lipogenesis, and ACO is able to promote fatty acid oxidation, feeding DHA oil may change the utilization of fatty acids through changing the expression of ADD1 and ACO. Therefore, feeding pigs with high DHA may lead to lower body fat deposition.

Transcriptional regulation of Niemann-Pick C1-like 1 gene by liver receptor homolog-1

  • Lee, Eui Sup;Seo, Hyun Jung;BacK, Su Sun;Han, Seung Ho;Jeong, Yeon Ji;Lee, Jin Wook;Choi, Soo Young;Han, Kyuhyung
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.513-518
    • /
    • 2015
  • Factors that modulate cholesterol levels have major impacts on cardiovascular disease. Niemann-Pick C1-like 1 (NPC1L1) functions as a sterol transporter mediating intestinal cholesterol absorption and counter-balancing hepatobiliary cholesterol excretion. The liver receptor homolog 1 (LRH-1) had been shown to regulate genes involved in hepatic lipid metabolism and reverse cholesterol transport. To study whether human NPC1L1 gene is regulated transcriptionally by LRH-1, we have analyzed evolutionary conserved regions (ECRs) in HepG2 cells. One ECR was found to be responsive to the LRH-1. Through deletion studies, LRH-1 response element was identified and the binding of LRH-1 was demonstrated by EMSA and ChIP assays. When SREBP2, one of several transcription factors which had been shown to regulate NPC1L1 gene, was co-expressed with LRH-1, synergistic transcriptional activation resulted. In conclusion, we have identified LRH-1 response elements in NPC1L1 gene and propose that LRH-1 and SREBP may play important roles in regulating NPC1L1 gene. [BMB Reports 2015; 48(9): 513-518]

Effect of Mixture of Atractylodes macrocephala and Amomum villosum Extracts on Body Weight and Lipid Metabolism in High Fat Diet-Induced Obesity Model (고지방식이 유도 비만 모델에서 백출과 사인 추출 혼합물이 체중 및 지질대사에 미치는 영향)

  • Kim, Ha Rim;Kwon, Yong Kwan;Choi, Bong Keun;Jung, Hyun Jong;Baek, Dong Gi
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we investigated the dose-dependent effects of mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts in a ratio of 3:1 on high fat diet (HFD)-induced obesity model. Oral administration of various concentrations with mixtures of AM and AV extracts in a ratio of 3:1 for 6 weeks inhibited HFD-induced increases of body, liver and epididymal fat weights in a dose-dependent fashions. Those effects may be mediated by decreased expressions of lipogenesis-related genes such as acetyl coA carboxylase (ACC) and fatty acid synthase (FAS) in liver. Also, increase of insulin and decrease of adiponectin in serum by HFD supply were inhibited by three different dosages of mixtures of AM and AV extracts in a ratio of 3:1. HFD supply induced increases of serum total cholesterol, triglyceride and LDL cholesterol. However, hyperlipidemia was significantly decreased in dose-dependent manners by treatment with mixtures of AM and AV extracts. Based on the results of the present study, hypolipidemic and anti-obesity effects by mixtures of AM and AV extracts were found in HFD-induced obesity model. Further clinical investigation is needed to develop anti-obesity therapeutic or preventive agents by using mixtures of AM and AV extracts.

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell

  • Jeong, Jin Young;Suresh, Sekar;Park, Mi Na;Jang, Mi;Park, Sungkwon;Gobianand, Kuppannan;You, Seungkwon;Yeon, Sung-Heom;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1783-1793
    • /
    • 2014
  • Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and $10{\mu}M$) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Molecular biologic demonstration on the green tea grouts-feed pork meats and duck meats (녹차부산물을 이용한 기능성 축산물 증명에 대한 분자생물학적 접근)

  • Kang Shin-Seok;Hyun Gong-Yul;Choi Hae-Yeun;Cho Woo-Young;Kim Tae-Yung;Kang Shin-Kwon;Kang Chung-Boo
    • Korean Journal of Veterinary Service
    • /
    • v.28 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Green tea was known which regulated adipocyte differentiation metabolism. The mechanism on the lipid decreased contents of TAG in the plasma. In addition, green tea increased the expression leptin mRNA, PPAR $\delta$ mRNA and TGF $\beta$. The tea tested was korean powdered green tea. In this experiment, Sprague-Dawley (SD) rats were fed $3\%$ green tea(powdered) for 3 weeks on the basal diet and obese diet and green tea grouts-fed pork meats. duck meats. The expression of leptin mRNA and PPAR $\delta$ mRNA were up-regulated in the green tea-fed groups compared with those of the not green tea-fed groups. There were no significantly difference on the expression of leptin mRNA and PPAR $\delta$ mRNA in green tea grouts-fed pork meats, duck meats as compared with the not fed green tea grouts meats. TGF $\beta$ mRNA. TNF $\alpha$ mRNA and adipsin mRNA were not expressed in the pork meats, duck meats. The expression of TGF $\beta$ mRNA, TNF $\alpha$ mRNA and adipsin mRNA were observed in the experimental rats but no significantly difference on the contents. Physiologic regulated genes were not expressed In the green tea grout-fed pork meats and duck meats.

Diallyl Biphenyl-Type Neolignans Have a Pharmacophore of PPARα/γ Dual Modulators

  • Han, Yujia;Liu, Jingjing;Ahn, Sungjin;An, Seungchan;Ko, Hyejin;Shin, Jeayoung C.;Jin, Sun Hee;Ki, Min Won;Lee, So Hun;Lee, Kang Hyuk;Shin, Song Seok;Choi, Won Jun;Noh, Minsoo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.397-404
    • /
    • 2020
  • Adiponectin secretion-promoting compounds have therapeutic potentials in human metabolic diseases. Diallyl biphenyl-type neolignan compounds, magnolol, honokiol, and 4-O-methylhonokiol, from a Magnolia officinalis extract were screened as adiponectin-secretion promoting compounds in the adipogenic differentiation model of human bone marrow mesenchymal stem cells (hBM-MSCs). In a target identification study, magnolol, honokiol, and 4-O-methylhonokiol were elucidated as PPARα and PPARγ dual modulators. Diallyl biphenyl-type neolignans affected the transcription of lipid metabolism-associated genes in a different way compared to those of specific PPAR ligands. The diallyl biphenyl-type neolignan structure provides a novel pharmacophore of PPARα/γ dual modulators, which may have unique therapeutic potentials in diverse metabolic diseases.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Ralstonia eutropha

  • Lee, Hyeok-Won;Park, Jung-Ho;Lee, Hee-Seok;Choi, Wonho;Seo, Sung-Hwa;Anggraini, Irika Devi;Choi, Eui-Sung;Lee, Hong-Weon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1656-1664
    • /
    • 2019
  • Isoprene has the potential to replace some petroleum-based chemicals and can be produced through biological systems using renewable carbon sources. Ralstonia eutropha can produce value-added compounds, including intracellular polyhydroxyalkanoate (PHA) through fatty acid and lipid metabolism. In the present study, we engineered strains of R. eutropha H16 and examined the strains for isoprene production. We optimized codons of all the genes involved in isoprene synthesis by the mevalonate pathway and manipulated the promoter regions using pLac and pJ5 elements. Our results showed that isoprene productivity was higher using the J5 promoter ($1.9{\pm}0.24{\mu}g/l$) than when using the lac promoter ($1.5{\pm}0.2{\mu}g/l$). Additionally, the use of three J5 promoters was more efficient ($3.8{\pm}0.18{\mu}g/l$) for isoprene production than a one-promoter system, and could be scaled up to a 5-L batch-cultivation from a T-flask culture. Although the isoprene yield obtained in our study was insufficient to meet industrial demands, our study, for the first time, shows that R. eutropha can be modified for efficient isoprene production and lays the foundation for further optimization of the fermentation process.