DOI QR코드

DOI QR Code

Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Ralstonia eutropha

  • Lee, Hyeok-Won (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Jung-Ho (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hee-Seok (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Wonho (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seo, Sung-Hwa (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Anggraini, Irika Devi (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Eui-Sung (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hong-Weon (Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2019.09.02
  • Accepted : 2019.09.22
  • Published : 2019.10.28

Abstract

Isoprene has the potential to replace some petroleum-based chemicals and can be produced through biological systems using renewable carbon sources. Ralstonia eutropha can produce value-added compounds, including intracellular polyhydroxyalkanoate (PHA) through fatty acid and lipid metabolism. In the present study, we engineered strains of R. eutropha H16 and examined the strains for isoprene production. We optimized codons of all the genes involved in isoprene synthesis by the mevalonate pathway and manipulated the promoter regions using pLac and pJ5 elements. Our results showed that isoprene productivity was higher using the J5 promoter ($1.9{\pm}0.24{\mu}g/l$) than when using the lac promoter ($1.5{\pm}0.2{\mu}g/l$). Additionally, the use of three J5 promoters was more efficient ($3.8{\pm}0.18{\mu}g/l$) for isoprene production than a one-promoter system, and could be scaled up to a 5-L batch-cultivation from a T-flask culture. Although the isoprene yield obtained in our study was insufficient to meet industrial demands, our study, for the first time, shows that R. eutropha can be modified for efficient isoprene production and lays the foundation for further optimization of the fermentation process.

Keywords

References

  1. Lee WH, Loo CY, Nomura CT, Sudesh K. 2008. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99: 6844-6851. https://doi.org/10.1016/j.biortech.2008.01.051
  2. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77: 2847-2854. https://doi.org/10.1128/AEM.02429-10
  3. Doi Y, Kawaguchi Y, Nakamura Y, Kunioka M. 1989. Nuclear magnetic resonance studies of poly(3-Hydroxybutyrate) and polyphosphate metabolism in alcaligenes eutrophus. Appl. Environ. Microbiol. 55: 2932-2938. https://doi.org/10.1128/AEM.55.11.2932-2938.1989
  4. Tanaka K, Ishizaki A, Kanamaru T, Kawano T. 1995. Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol. Bioeng. 45: 268-275. https://doi.org/10.1002/bit.260450312
  5. Park JM, Kim TY, Lee SY. 2011. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst. Biol. 5: 101. https://doi.org/10.1186/1752-0509-5-101
  6. Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
  7. Schubert P, Steinbuchel A, Schlegel HG. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-betahydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847. https://doi.org/10.1128/jb.170.12.5837-5847.1988
  8. Ishizaki A, Tanaka K, Taga N. 2001. Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl. Microbiol. Biotechnol. 57: 6-12. https://doi.org/10.1007/s002530100775
  9. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, et al. 2012. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335: 1596. https://doi.org/10.1126/science.1217643
  10. Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ. 2014. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98: 4277-4290. https://doi.org/10.1007/s00253-014-5591-0
  11. Muller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, et al. 2013. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl. Environ. Microbiol. 79: 4433-4439. https://doi.org/10.1128/AEM.00973-13
  12. Ward AMS-o-T, GB), Narayanaswamy, Ravichander (Bangalore, IN), Oprins, Arno Johannes Maria (Maastricht, NL), Rajagopalan, Vijayanand (Bangalore, IN), Schaerlaeckens, Egidius Jacoba Maria (Geleen, NL), Velasco Pelaez, Raul (Maastricht, NL). 2016. Process and installation for the conversion of crude oil to petrochemicals having an improved carbon-efficiency. United States patent application 20160369187.
  13. Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12: 70-79. https://doi.org/10.1016/j.ymben.2009.10.001
  14. Bentley FK, Zurbriggen A, Melis A. 2014. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant. 7: 71-86. https://doi.org/10.1093/mp/sst134
  15. Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430. https://doi.org/10.1038/343425a0
  16. Rohmer M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565-574. https://doi.org/10.1039/a709175c
  17. Lee HW, Park JH, Lee HS, Kim CS, Lee JG, Kim WK, et al. 2019. Development of novel on-line capillary gas chromatography-based analysis method for volatile organic compounds produced by aerobic fermentation. J. Biosci. Bioeng. 127: 121-127. https://doi.org/10.1016/j.jbiosc.2018.07.007
  18. Xue J, Ahring BK. 2011. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl. Environ. Microbiol. 77: 2399-2405. https://doi.org/10.1128/AEM.02341-10
  19. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, et al. 2014. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J. Biotechnol. 186: 128-136. https://doi.org/10.1016/j.jbiotec.2014.06.024
  20. Eroglu E, Melis A. 2010. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour. Technol. 101: 2359-2366. https://doi.org/10.1016/j.biortech.2009.11.043
  21. Seemann M, Campos N, Rodriguez-Concepcion M, Ibanez E, Duvold T, Tritsch D, et al. 2002. Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2-methylbut-2-ene-1,4-diol. Tetrahedron. Lett. 43: 1413-1415. https://doi.org/10.1016/S0040-4039(02)00003-5
  22. Farmer WR, Liao JC. 2001. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17: 57-61. https://doi.org/10.1021/bp000137t
  23. Kajiwara S, Fraser PD, Kondo K, Misawa N. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324(Pt 2): 421-426. https://doi.org/10.1042/bj3240421
  24. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796-802. https://doi.org/10.1038/nbt833
  25. Zurbriggen A, Kirst H, Melis A. 2012. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). BioEnergy Res. 5: 814-828. https://doi.org/10.1007/s12155-012-9192-4
  26. Gruber S, Hagen J, Schwab H, Koefinger P. 2014. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J. Biotechnol. 186: 74-82. https://doi.org/10.1016/j.jbiotec.2014.06.030
  27. Kim KJ, Kim HE, Lee KH, Han W, Yi MJ, Jeong J, et al. 2004. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Sci. 13: 1698-1703. https://doi.org/10.1110/ps.04644504
  28. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, 2nd, et al. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  29. Lee HW, Lee HS, Kim CS, Lee JG, Kim WK, Lee EG, et al. 2018. Enhancement of L-threonine production by controlling sequential carbon-nitrogen ratios during fermentation. J. Microbiol. Biotechnol. 28: 293-297. https://doi.org/10.4014/jmb.1708.08072
  30. Wu H-S, Tsai M-J. 2004. Kinetics of tributyrin hydrolysis by lipase. Enzyme Microbial Technol. 35: 488-493. https://doi.org/10.1016/j.enzmictec.2004.08.002
  31. Chaves JE, Melis A. 2018. Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol. 102: 6451-6458. https://doi.org/10.1007/s00253-018-9093-3
  32. Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM. 2018. Synthesis of heterologous mevalonic acid pathway enzymes in clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene. Appl. Environ. Microbiol. 84. pii: e01723-17.
  33. Koller M, Atlic A, Dias M, Reiterer A, Braunegg G. 2010. Microbial PHA Production from Waste Raw Materials, pp. 85-119. In Chen GG-Q (ed.), Plastics from Bacteria: Natural Functions and Applications, Ed. Springer Berlin Heidelberg, Berlin, Heidelberg
  34. Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S. 2011. Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl. Microbiol. Biotechnol. 89: 1527-1536. https://doi.org/10.1007/s00253-011-3100-2
  35. Alagesan S, Hanko EKR, Malys N, Ehsaan M, Winzer K, Minton NP. 2018. Functional genetic elements for controlling gene expression in Cupriavidus necator H16. Appl. Environ. Microbiol. 84. pii: e00878-18.
  36. Batcha AF, Prasad DM, Khan MR, Abdullah H. 2014. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess Biosyst. Eng. 37: 943-951. https://doi.org/10.1007/s00449-013-1066-4

Cited by

  1. Plasmid expression level heterogeneity monitoring via heterologous eGFP production at the single-cell level in Cupriavidus necator vol.104, pp.13, 2019, https://doi.org/10.1007/s00253-020-10616-w