• Title/Summary/Keyword: Lipase stability

Search Result 59, Processing Time 0.024 seconds

Production, Immobilization, and Characterization of Croceibacter atlanticus Lipase Isolated from the Antarctic Ross Sea (남극 로스해에서 분리한 Croceibacter atlanticus균 유래 리파아제의 생산, 고정화, 효소특성 연구)

  • Park, Chae Gyeong;Kim, Hyung Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • The Antarctic Ocean contains numerous microorganisms that produce novel biocatalysts that can have applications in various industries. We screened various psychrophilic bacterial strains isolated from the Ross Sea and found that a Croceibacter atlanticus strain (Stock No. 40-F12) showed high lipolytic activity on a tributyrin plate. We isolated the corresponding lipase gene (lipCA) by shotgun cloning and expressed the LipCA enzyme in Escherichia coli cells. Homology modeling of LipCA was carried out using the Spain Arreo lake metagenome alpha/beta hydrolase as a template. According to the model, LipCA has an ${\alpha}/{\beta}$ hydrolase fold, Gly-X-Ser-X-Glymotif, and lid sequence, indicating that LipCA is a typical lipase enzyme. Active LipCA enzyme was purified fromthe cell-free extract by ammonium sulfate precipitation and gel filtration chromatography. We determined its enzymatic properties including optimum temperature and pH, stability, substrate specificity, and organic solvent stability. LipCA was immobilized by the cross-linked enzyme aggregate (CLEA) method and its enzymatic properties were compared to those of free LipCA. After cross-linking, temperature, pH, and organic solvent stability increased considerably, whereas substrate specificities did not changed. The LipCA CLEA was recovered by centrifugation and showed approximately 40% activity after 4th recovery. This is the first report of the expression, characterization, and immobilization of a C. atlanticus lipase, and this lipase could have potential industrial application.

Purification and Characterization of an Alkali-Thermostable Lipase from Thermophilic Anoxybacillus flavithermus HBB 134

  • Bakir, Zehra Burcu;Metin, Kubilay
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1087-1097
    • /
    • 2016
  • An intracellular lipase from Anoxybacillus flavithermus HBB 134 was purified to 7.4-fold. The molecular mass of the enzyme was found to be about 64 kDa. The maximum activity of the enzyme was at pH 9.0 and 50℃. The enzyme was stable between pH 6.0 and 11.0 at 25℃, 40℃, and 50℃ for 24 h. The Km and Vmax of the enzyme for pNPL substrate were determined as 0.084 mM and 500 U/mg, respectively. Glycerol, sorbitol, and mannitol enhanced the enzyme thermostability. The enzyme was found to be highly stable against acetone, ethyl acetate, and diethyl ether. The presence of PMSF, NBS, DTT and β-mercaptoethanol inhibited the enzyme activity. Hg2+, Fe3+, Pb2+, Al3+, and Zn2+ strongly inhibited the enzyme whereas Li+, Na+, K+, and NH4+ slightly activated it. At least 60% of the enzyme activity and stability were retained against sodium deoxycholate, sodium taurocholate, n-octyl-β-D-glucopyranoside, and CHAPS. The presence of 1% Triton X-100 caused about 34% increase in the enzyme activity. The enzyme is thought to be a true lipase since it has preferred the long-chain triacylglycerols. The lipase of HBB 134 cleaved triolein at the 1- or 3-position.

Production of Lipase-catalyzed Structured Lipid from Olive Oil with Omega-3 Polyunsaturated Fatty Acids

  • Kahveci, Derya;Can, Ash;Ozcelik, Beraat
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • Acidolysis of olive oil with omega-3 (n-3) polyunsaturated fatty acids (PUFAs) was carried out to produce a structured lipid. Novozym $435^{(R)}$ from Candida antarctica was used as the biocatalyst. Response surface methodology (RSM) was used to determine optimum conditions for lipase-catalyzed enrichment of olive oil. Three factors, 5 levels, central composite design was used. The effects of incubation time, temperature, and substrate mole ratio on incorporation ratio (n-3 fatty acids/total fatty acids, %) were investigated. From the evaluation of response surface graphs, the optimal conditions for incorporation of long chain n-3 PUFAs into olive oil were $40-60^{\circ}C$ for temperature, 30-45 hr for reaction time, and 3:1-5:1 (n-3 fatty acids/olive oil) for substrate mole ratio. Experiments conducted under optimized conditions predicted by the model equation obtained from RSM yielded structured lipids with 50.8% n-3 PUFAs. This value agreed well with that predicted by the model. Oxidative stability tests showed that the product was more susceptible to oxidation than unmodified olive oil. Antioxidant addition improved the oxidative stability of the product.

Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications

  • Kim, T. Doohun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1907-1915
    • /
    • 2017
  • Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have ${\alpha}/{\beta}-hydrolase$ fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids

  • An, Gwangmin;Kim, Young Min;Koo, Yoon-Mo;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at $50^{\circ}C$.

Development of Lipase Hyper-producing Strain from Hybrids between Aspergillus niger and Penicillium chrysogenum by Nuclear Transfer (핵전이에 의한 Aspergillus niger와 Penicillium chrysogenum의 잡종에서의 Lipase 고생산균주의 개발)

  • 양영기;문명님;이윤희;임채영
    • Korean Journal of Microbiology
    • /
    • v.33 no.1
    • /
    • pp.31-37
    • /
    • 1997
  • Intergeneric hybrids between Aspergillus niger and Perricillium ch~y.sop~um(Tyr ), hyperlipolytic enzyne-producing fungi, were obtained by nuclear transfer technique:. Optimal conditions for formation of intergeneric hybrids were investigated. Maximum production of protoplasts were obtainrd by 1% Novozym 234 at $30^{\circ}C$ for 3 hrs and the most effective osmotic stabilizers for the isolation of protoplasts were 0.6 M KC]. Frequencies of hybrid formation by nuclear transfer were $1.3{\times}$10^{-3}$$ $-3.8{\times}$10^{-3}$$. From the chervation of genetic stability, conidial size, DNA content, ;md nuclear stain, it was suggested that their karyotypes are aneuploid. The hybrids showed 1.4-2.2 fold higher lipase activities than parental strains. It was strongly supported by results of this study that nuclear transfer technique is much more efficient in the formation of intergeneric hybrids than protoplast fusion and is very useful for the improvement of strains.

  • PDF

Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071

  • Su, Hongfei;Mai, Zhimao;Yang, Jian;Xiao, Yunzhu;Tian, Xinpeng;Zhang, Si
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1067-1076
    • /
    • 2016
  • The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30℃ and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0℃ and good stability at temperatures below 35℃. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30℃. Its activity was slightly affected by some metal ions such as K+, Ca2+, and Na+. The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa

  • Kolodziejczak-Radzimska, Agnieszka;Zdarta, Jakub;Ciesielczyk, Filip;Jesionowski, Teofil
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2220-2231
    • /
    • 2018
  • Lipase from Candida rugosa was immobilized on $MgO{\cdot}SiO_2$ hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature $N_2$ sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25-28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on $MgO{\cdot}SiO_2$ hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range $30-70^{\circ}C$. Lipase immobilized on the $MgO{\cdot}SiO_2$ systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.

Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won;Yi, Song-Se;Kim, Ju-Han;Lee, Yoon-Sik;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.